线性代数(18)——行列式(上)

行列式概念

行列式是方阵的一个属性,在之前对矩阵的理解是“矩阵是一组向量”每一列对应着一个向量,而方阵表示的是 n n n n n n维向量。

行列式是一个数字,以二维空间为例,下面的三组基向量都是构成二维空间的向量,
在这里插入图片描述
构成这三个二维坐标系的向量围成的面积就是行列式。继续深入到三维、四维至 n n n维空间,行列式可以理解为构成这些空间所用的基向量围成的体积。与矩阵不一样的是,行列式中每一行是一个向量。与一般的面积和体积不一样的是,行列式的值可以是负数,理解为一个有向的面积或体积

行列式求法

二维空间为例

两个二维向量构成的是二维坐标系,
在这里插入图片描述
对应有一个行列式,有两种表示形式
d e t ( a b c d ) det\begin{pmatrix}a&b\\c&d\end{pmatrix} det(acbd) ∣ a b c d ∣ \begin{vmatrix}a&b\\c&d\end{vmatrix} acbd
依据求平行四边形面积的过程推导二维空间的行列式的计算,
在这里插入图片描述
即主对角线元素乘积减去副对角线元素乘积(仅限二维,高维度矩阵计算更复杂)。
∣ a b c d ∣ = a d − b c ∣ c d a b ∣ = b c − a d ∣ a b c d ∣ = − ∣ c d a b ∣ \begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc\\\begin{vmatrix}c&d\\a&b\end{vmatrix}=bc-ad\\\begin{vmatrix}a&b\\c&d\end{vmatrix}=-\begin{vmatrix}c&d\\a&b\end{vmatrix} acbd=adbccadb=bcadacbd=cadb
行列式表示向量组在空间中形成的有向体积。

三阶及以上行列式

更高维度的行列式是不容易使用上面的过程推导的,三阶行列式对应的六面体需要空间几何的运算,更高维度的体积无法可视化,推导的难度更大。

行列式表示向量组在空间中形成的有向体积,在行列式中,每一行都是向量,且向量排列的顺序是有意义的,交换两行,则行列式的值取反。

行列式的四个基本性质

  1. 标准单位向量的行列式值为1。
  2. 交换行列式的两行,则行列式的值取反。
    以二维空间为例,行列式可以理解为两个二维向量围成的有向面积。如果将向量取反,则相当于把围成的面积翻面,方向与原先相反,故行列式的值也是相反的。
  3. 方阵的某一行乘以一个数 k k k,则其对应的行列式也缩放了 k k k
    ∣ k a k b c d ∣ = k ∣ a b c d ∣ \begin{vmatrix}ka&kb\\c&d\end{vmatrix}=k\begin{vmatrix}a&b\\c&d\end{vmatrix} kackbd=kacbd
    以下面的向量为例, ( a , b ) (a, b) (a,b)向量在其方向上延伸了两倍,相应围成的面积绿色表示,是之前蓝色面积的两倍。
    在这里插入图片描述在这里插入图片描述
    这一点一定与矩阵相区分,一个矩阵 A A A与一个常数 k k k之间的乘积 k ⋅ A k\cdot A kA结果是矩阵 A A A所有的元素都变为之前的 k k k倍,而不是某个列向量变为之前的 k k k倍。

    d e t ( k ⋅ A ) = k n d e t ( A ) det(k\cdot A)=k^ndet(A) det(kA)=kndet(A)
  4. 如果行列式某一行加上一行数,有
    ∣ a + a ′ b + b ′ c d ∣ = ∣ a b c d ∣ + ∣ a ′ b ′ c d ∣ \begin{vmatrix}a+a'&b+b'\\c&d\end{vmatrix}=\begin{vmatrix}a&b\\c&d\end{vmatrix}+\begin{vmatrix}a'&b'\\c&d\end{vmatrix} a+acb+bd=acbd+acbd
    在这里插入图片描述
    证明如下,
    l e f t = ( a + a ′ ) d − ( b + b ′ ) c = a d + a ′ d − b c − b ′ c r i g h t = a d − b c + a ′ d − b ′ c left=(a+a')d-(b+b')c=ad+a'd-bc-b'c\\right=ad-bc+a'd-b'c left=(a+a)d(b+b)c=ad+adbcbcright=adbc+adbc

行列式与矩阵的逆

行列式与矩阵的逆的关系与行列式的性质密切相关。

行列式性质延伸

  1. 在此处先提出另一条行列式的特性,如果行列式的某两行相同,则行列式的值为0。具体的证明如下,
    在这里插入图片描述
    除了使用代数形式推导,也可以通过空间想象的方式得到结论。因为两个向量相等,方阵构成的空间由原先的 n n n维变为 n − 1 n-1 n1维,缺少一维的情况下向量在 n n n维空间所围成的有向体积就不存在了。
  2. 如果行列式的一行是另一行的 k k k倍,则行列式的值为0
  3. 如果行列式有一行是零向量,则行列式的值为0

实际上第一条和第三条性质是第二条性质的特殊情况,分别对应 k = 1 k=1 k=1 k = 0 k=0 k=0的两种情况。

三个性质可以总结归纳为如果行列式的一行是其他行的线性组合,则该行列式的值为0。可以理解为,行列式蕴含了一行没有额外信息的向量。通过下面的简单例子提出证明,
在这里插入图片描述

行列式与矩阵的逆

行列式形成一个向量组,
如 果 这 组 向 量 线 性 相 关 , 则 行 列 式 值 为 0 ⟺ 矩 阵 不 可 逆 如果这组向量线性相关,则行列式值为0\Longleftrightarrow 矩阵不可逆 线0
如 果 这 组 向 量 线 性 无 关 , 则 行 列 式 值 为 0 ⟺ 矩 阵 可 逆 如果这组向量线性无关,则行列式值为0\Longleftrightarrow 矩阵可逆 线0
由此,与矩阵可逆等价的命题又新增了一条,具体总结如下,
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值