线性代数(11)——线性相关、线性无关和生成空间

线性组合

标量中存在线性函数,即k个标量和另外 k k k个标量的组合 k 1 ⋅ x 1 + k 2 ⋅ x 2 + … … + k p ⋅ x p k_1\cdot x_1+k_2\cdot x_2+……+k_p\cdot x_p k1x1+k2x2++kpxp标量的线性组合最终得到的依旧是一个标量

线性组合是针对向量而言的,可以理解为,给定 p p p个维度相同的向量 v 1 ⃗ 、 v 2 ⃗ 、 … … v p ⃗ \vec{v_1}、\vec{v_2}、……\vec{v_p} v1 v2 vp ,同时给定 p p p个标量 k 1 、 k 2 、 … … k p k_1、k_2、……k_p k1k2kp,将这 p p p个标量和 p p p个向量进行组合得到的 k 1 ⋅ v 1 ⃗ + k 2 ⋅ v 2 ⃗ + … … + k p ⋅ v p ⃗ k_1\cdot\vec{v_1}+k_2\cdot\vec{v_2}+……+k_p\cdot\vec{v_p} k1v1 +k2v2 ++kpvp 就被称为这些向量的一个线性组合。向量的线性组合最终得到的同样还是个向量

线性相关和线性无关

线性相关和线性无关是建立在线性组合的基础上的。

线性相关

对于给定p个维度相同的向量 v 1 ⃗ 、 v 2 ⃗ 、 … … v p ⃗ \vec{v_1}、\vec{v_2}、……\vec{v_p} v1 v2 vp 而言,若存在一组不全为0的标量 k k k使得 k 1 ⋅ v 1 ⃗ + k 2 ⋅ v 2 ⃗ + … … + k p ⋅ v p ⃗ = 0 k_1\cdot\vec{v_1}+k_2\cdot\vec{v_2}+……+k_p\cdot\vec{v_p}=0 k1v1 +k2v2 ++kpvp =0,则称这p和向量线性相关。

线性相关也可以更通俗的理解为,其中任意的一个系数不为0的向量都能够使用其他向量表示

上面的命题是互为充要的,即
如 果 v 1 ⃗ 、 v 2 ⃗ 、 … … v p ⃗ 线 性 相 关 ⇔ 其 中 一 个 项 目 可 以 写 为 其 他 向 量 线 性 组 合 如果\vec{v_1}、\vec{v_2}、……\vec{v_p}线性相关\Leftrightarrow其中一个项目可以写为其他向量线性组合 v1 v2 vp 线线
具体的证明如下,

  1. 给出正向证明,
    k 1 ⋅ v 1 ⃗ + k 2 ⋅ v 2 ⃗ + … … + k p ⋅ v p ⃗ = 0 k_1\cdot\vec{v_1}+k_2\cdot\vec{v_2}+……+k_p\cdot\vec{v_p}=0 k1v1 +k2v2 ++kpvp =0
    k i k_i ki不为0,则 k i ⋅ v i ⃗ = − k 1 ⋅ v 1 ⃗ − k 2 ⋅ v 2 ⃗ − … … − k p ⋅ v p ⃗ k_i\cdot \vec{v_i} = -k_1\cdot\vec{v_1}-k_2\cdot\vec{v_2}-……-k_p\cdot\vec{v_p} kivi =k1v1 k2v2 kpvp
    可得
    v i ⃗ = − k 1 k i ⋅ v 1 ⃗ − k 2 k i ⋅ v 2 ⃗ − … … − k p k i ⋅ v p ⃗ \vec{v_i} = -\frac{k_1}{k_i}\cdot\vec{v_1}-\frac{k_2}{k_i}\cdot\vec{v_2}-……-\frac{k_p}{k_i}\cdot\vec{v_p} vi =kik1v1 kik2v2 kikpvp
  2. 给出反向证明
    v i ⃗ = k 1 ⋅ v 1 ⃗ + k 2 ⋅ v 2 ⃗ + … … + k p ⋅ v p ⃗ \vec{v_i} = k_1\cdot\vec{v_1}+k_2\cdot\vec{v_2}+……+k_p\cdot\vec{v_p} vi =k1v1 +k2v2 ++kpvp
    则有,
    k 1 ⋅ v 1 ⃗ + k 2 ⋅ v 2 ⃗ + … + ( − 1 ) ⋅ v i ⃗ + … + k p ⋅ v p ⃗ = 0 k_1\cdot\vec{v_1}+k_2\cdot\vec{v_2}+…+(-1)\cdot \vec{v_i}+…+k_p\cdot\vec{v_p}=0 k1v1 +k2v2 ++(1)vi ++kpvp =0

线性无关

对于给定 p p p个维度相同的向量 v 1 ⃗ 、 v 2 ⃗ 、 … … v p ⃗ \vec{v_1}、\vec{v_2}、……\vec{v_p} v1 v2 vp 而言,只有全为0的标量 k k k时使得 k 1 ⋅ v 1 ⃗ + k 2 ⋅ v 2 ⃗ + … + k p ⋅ v p ⃗ = 0 k_1\cdot\vec{v_1}+k_2\cdot\vec{v_2}+…+k_p\cdot\vec{v_p}=0 k1v1 +k2v2 ++kpvp =0,则称这 p p p个向量线性无关。此时对应的是 k k k全为0的情况。

也就是说这p个向量任何一个都不能被其他向量的线性组合表示。最简单的例子就是空间中表示坐标轴方向的标准单位向量,
在这里插入图片描述
下面给出的是n个标准单位向量线性无关的证明,
证 明 单 位 向 量 e 1 ⃗ , e 2 ⃗ , e 3 ⃗ , . . . , e n ⃗ 线 性 无 关 证明单位向量 \vec{e_1},\vec{e_2},\vec{e_3},...,\vec{e_n}线性无关 e1 ,e2 ,e3 ,...,en 线
使用反证法证明,假设线性相关,则次幂在不全为0的一组 k k k,使得 k 1 ⋅ e 1 ⃗ + k 2 ⋅ e 2 ⃗ + … + k n ⋅ v n ⃗ = 0 k_1\cdot\vec{e_1}+k_2\cdot\vec{e_2}+…+k_n\cdot\vec{v_n}=0 k1e1 +k2e2 ++knvn =0。假设 k i ≠ 0 k_i≠0 ki̸=0
e i ⃗ = − k 1 k i ⋅ e 1 ⃗ − k 2 k i ⋅ e 2 ⃗ − … … − k n k i ⋅ e n ⃗ \vec{e_i} = -\frac{k_1}{k_i}\cdot\vec{e_1}-\frac{k_2}{k_i}\cdot\vec{e_2}-……-\frac{k_n}{k_i}\cdot\vec{e_n} ei =kik1e1 kik2e2 kiknen
e i ⃗ = ( − k 1 k i , − k 2 k i , . . . , − k i − 1 k i , 0 , − k i + 1 k i , . . . , − k n k i ) \vec{e_i}=(-\frac{k_1}{k_i},-\frac{k_2}{k_i},...,-\frac{k_{i-1}}{k_i},0,-\frac{k_{i+1}}{k_i},...,-\frac{k_n}{k_i}) ei =(kik1,kik2,...,kiki1,0,kiki+1,...,kikn)。矛盾,即证。

重要性质

  1. m m m n n n维向量 v 1 ⃗ 、 v 2 ⃗ 、 … … v m ⃗ \vec{v_1}、\vec{v_2}、……\vec{v_m} v1 v2 vm ,若 m > n m>n m>n,则 v 1 ⃗ 、 v 2 ⃗ 、 … … v m ⃗ \vec{v_1}、\vec{v_2}、……\vec{v_m} v1 v2 vm 一定线性相关
    ( v 11 v 21 . . . v m 1 v 12 v 22 . . . v m 2 . . . . . . . . . . . . v 1 n v 2 n . . . v m n ) ⋅ ( k 1 k 2 k 3 . . . k m ) = 0 \begin{pmatrix}v_{11}&v_{21}&...&v_{m1}\\v_{12}&v_{22}&...&v_{m2}\\...&...&...&...\\v_{1n}&v_{2n}&...&v_{mn}\end{pmatrix}\cdot \begin{pmatrix}k_1\\k_2\\k_3\\...\\k_m\end{pmatrix}=0 v11v12...v1nv21v22...v2n............vm1vm2...vmnk1k2k3...km=0
    因为 m > n m>n m>n,所以系数矩阵化为行最简形式,肯定非零行小于列数。故必然存在无穷解。相当于方程数目小于未知数个数(参见)
  2. m m m n n n维向量 v 1 ⃗ 、 v 2 ⃗ 、 … … v m ⃗ \vec{v_1}、\vec{v_2}、……\vec{v_m} v1 v2 vm ,若 m = n m=n m=n,且 m m m个列向量构成的矩阵可逆时, v 1 ⃗ 、 v 2 ⃗ 、 … … v m ⃗ \vec{v_1}、\vec{v_2}、……\vec{v_m} v1 v2 vm 一定线性无关
    此时与矩阵可逆的等价命题又增加了一个,
    在这里插入图片描述
  3. m m m n n n维向量 v 1 ⃗ 、 v 2 ⃗ 、 … … v m ⃗ \vec{v_1}、\vec{v_2}、……\vec{v_m} v1 v2 vm ,若存在零向量,则 v 1 ⃗ 、 v 2 ⃗ 、 … … v m ⃗ \vec{v_1}、\vec{v_2}、……\vec{v_m} v1 v2 vm 一定线性相关
    假设 v i ⃗ = O \vec{v_i}=O vi =O
    k 1 = 0 , k 2 = 0 , . . . , k i − 1 = 0 , k i = 666 , k i + 1 = 0 , . . . , k m = 0 满 足 k 1 ⋅ v 1 ⃗ + k 2 ⋅ v 2 ⃗ + . . . + k m ⋅ v m ⃗ = 0 k_1=0,k_2=0,...,k_{i-1}=0,k_i=666,k_{i+1}=0,...,k_m=0\\满足k_1\cdot \vec{v_1}+k_2\cdot \vec{v_2}+...+k_m\cdot \vec{v_m}=0 k1=0,k2=0,...,ki1=0,ki=666,ki+1=0,...,km=0k1v1 +k2v2 +...+kmvm =0
    证毕。

直观理解线性相关和线性无关

线性相关

线性相关在之前的小节中可以很简单的理解为, m m m个向量中其中一个向量可以写成其他向量的线性组合。从另一个层面而言,这 m m m个向量中存在冗余的信息

以二维平面为例进行理解,在二维空间中随意取两个向量 u ⃗ \vec{u} u v ⃗ \vec{v} v ,之后再在平面中随意取一个向量 w ⃗ \vec{w} w 。依据之前的性质,这三个向量一定是线性相关的,
在这里插入图片描述
在这里插入图片描述
u ⃗ \vec{u} u v ⃗ \vec{v} v 的数乘所对应的标量实际上就是线性相关时的系数。对于比较特殊的情况,即 u ⃗ \vec{u} u v ⃗ \vec{v} v 共线,
在这里插入图片描述

线性无关

线性无关意味着每一个向量都是独立的,所有的向量中不存在冗余的信息。比如在二维空间中,任意两个不共线的向量都是线性无关的;同样的三维空间中,三个不共面的向量都是线性无关的。

生成空间

线性代数中十分重要的概念。

定义

以二维空间为例,任意两个不共线的向量都是线性无关的,此时若添加第三个向量,则这三个向量就会变成线性相关的。上一节中, w ⃗ \vec{w} w 可以被 u ⃗ \vec{u} u v ⃗ \vec{v} v 的线性组合表示。即任何其他向量都可以使用u和v的线型组合表示,此时可以说 u ⃗ \vec{u} u v ⃗ \vec{v} v 生成了整个二维空间

推广到 n n n维空间中,如果空间中所有向量都能够被表示为 v 1 ⃗ 、 v 2 ⃗ 、 … 、 v n ⃗ \vec{v_1}、\vec{v_2}、…、\vec{v_n} v1 v2 vn 的线性组合,则称这些向量可以生成这个空间。

实际上 u ⃗ \vec{u} u v ⃗ \vec{v} v w ⃗ \vec{w} w 也可以生成整个二维空间, w ⃗ \vec{w} w 的系数取0即可。此时会引出一个问题,最少需要几个向量生成二维空间?为了解决这个问题可以进行如下推导,

  1. 首先肯定不是一个向量,一个向量只能表示与其共线的向量。
  2. 不是三个向量,根据线性相关的性质,3个二维向量此时3>2,则一定线性相关。
  3. 所以最少需要两个向量生成二维空间。

将这一推论拓展到 n n n维空间中,可以得到“对于一个n维空间,至少需要 n n n个向量才能够生成。”,利用反证法进行证明,假设 m m m个向量可以生成 n n n维空间,且 m &lt; n m&lt;n m<n
k 1 ⋅ ( v 11 v 12 . . . v 1 n ) + . . . + k m ⋅ ( v m 1 v m 2 . . . v m n ) = ( u 1 u 2 . . . u n ) k_1\cdot \begin{pmatrix}v_{11}\\v_{12}\\...\\v_{1n}\end{pmatrix}+...+k_m\cdot \begin{pmatrix}v_{m1}\\v_{m2}\\...\\v_{mn}\end{pmatrix}=\begin{pmatrix}u_{1}\\u_{2}\\...\\u_{n}\end{pmatrix} k1v11v12...v1n+...+kmvm1vm2...vmn=u1u2...un
因为 m &lt; n m&lt;n m<n,所以想来构成的矩阵的行最简形式一定有零行。不能保证零行对应的 u ⃗ \vec{u} u 是0,所以该线性系统是无解的,不存在这样的 m m m个向量。

反过来, n n n n n n维向量是不一定能够生成 n n n维空间的。只有 n n n个向量组成的矩阵经过Gauss-Jordan消元法处理得到的行最简形式是一个单位矩阵时,此时线性系统具有唯一解,此时这 n n n个向量能生成空间

此时再一次与矩阵的逆的性质联系在了一起,矩阵 A A A可逆的等价命题又多了2条,
在这里插入图片描述

空间的基

定义

当一组向量能够生成 n n n维空间,且这些向量线性无关,则这组向量一定有 n n n个。此时称这 n n n个向量是该 n n n维空间的一组基。

通过上面的定义,
n 个 n 维 向 量 v 1 ⃗ , v 2 ⃗ , . . . , v n ⃗ , 若 他 们 是 这 个 n 维 空 间 的 基 ⇔ 1 ) v 1 ⃗ , v 2 ⃗ , . . . , v n ⃗ 生 成 整 个 n 维 空 间 2 ) v 1 ⃗ , v 2 ⃗ , . . . , v n ⃗ 线 性 无 关 n个n维向量\vec{v_1},\vec{v_2},...,\vec{v_n},若他们是这个n维空间的基\Leftrightarrow \\1) \vec{v_1},\vec{v_2},...,\vec{v_n}生成整个n维空间\\ 2) \vec{v_1},\vec{v_2},...,\vec{v_n}线性无关 nnv1 ,v2 ,...,vn n1)v1 ,v2 ,...,vn n2)v1 ,v2 ,...,vn 线
n n n维空间中,如果给定一组基。任何一个向量都可以表示成这组基的线性组合,且表示方法唯一

空间的基实际上可以理解为一组坐标系,只是与一般的直角坐标系不同,这些组成空间的向量基彼此之间不一定是相互垂直的

性质

  1. n n n维空间中,任意 n n n个线性无关的向量,一定是这个 n n n维空间的基。

  2. n n n维空间中,如果 n n n个向量可以生成整个空间,则这 n n n个向量是这个 n n n维空间的基。

向量个数和空间维度之间的关系,

  • 如果 n n n维空间的 p p p个向量 v 1 ⃗ , v 2 ⃗ , . . . , v p ⃗ \vec{v_1},\vec{v_2},...,\vec{v_p} v1 ,v2 ,...,vp 线性无关,则 p ≤ n p≤n pn
  • 如果 n n n维空间的 p p p个向量 v 1 ⃗ , v 2 ⃗ , . . . , v p ⃗ \vec{v_1},\vec{v_2},...,\vec{v_p} v1 ,v2 ,...,vp 线性相关,则 p &gt; n p&gt;n p>n
  • 如果 n n n维空间的 p p p个向量 v 1 ⃗ , v 2 ⃗ , . . . , v p ⃗ \vec{v_1},\vec{v_2},...,\vec{v_p} v1 ,v2 ,...,vp 可以生成 n n n维空间,则 p ≤ n p≤n pn
  • 如果 n n n维空间的 p p p个向量 v 1 ⃗ , v 2 ⃗ , . . . , v p ⃗ \vec{v_1},\vec{v_2},...,\vec{v_p} v1 ,v2 ,...,vp n n n维空间的基,则 p = n p=n p=n

小结

在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值