使用Pytorch创建张量以及使用numpy创建数组的异同点

这篇博客对比了Python科学计算库NumPy与深度学习框架PyTorch在创建和操作数组及张量上的异同。介绍了如何使用NumPy创建和初始化数组,以及PyTorch中创建张量的方法,包括使用特定数据、空张量、全零和全一数组。还提到了PyTorch张量的GPU加速优势和torch.Tensor与torch.tensor的区别。

NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
Pytorch是一个基于Python的计算包,提供两个高级功能:1、具有强大的GPU加速的张量计算;2、包含自动求导系统的深度神经网络。
Numpy创建的数组(ndarray)和Pytorch创建的张量(Tensors)具有相似的形式,但是Tensors具有可以使用GPU计算的优点。

使用Numpy创建数组

1、使用确切的数据创建ndarray(numpy.array())

import numpy as np
a = np.array([4, 5, 6])

2、创建指定形状和dtype的未初始化数组(numpy.empty())
数组元素为随机值


                
评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汉德萨姆ys

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值