C数据结构--二叉树的概念及基本算法


1 二叉树的定义:

二叉树(Binary Tree)是有限元素的集合,该集合或者为空,或者由一个称为根(root)元素及2个不相交、
被分别称为左子树和右子树的二叉树组成。当集合为空时,称该二叉树为空二叉树,一个元素也称为一个节点。
二叉树是有序的,即若将其左、右子树颠倒,就成为了一棵不同的二叉树。即使树中只有一个子节点,也要区分它
是左子树还是右子树。因此,二叉树具有5中不同的基本形态:

空二叉树、仅含根节点的二叉树、含有根节点左子树的二叉树、含有根节点和左右子树的二叉树。


2、二叉树的一些概念
(1) 节点的度。
    节点所拥有的子树的个数称为该节点的度
(2) 叶节点 、叶子节点、树叶节点 、终端节点
      度为0的节点称为叶节点,或者终端节点。
(3) 分支节点 、树枝节点  、 枝节点
   度不为0的节点称为分支节点,或者非终端节点。一棵树除叶节点外 ,其余都是分支节点。
(4)左孩子、右孩子、双亲(父节点)、兄弟
    树中一个节点的左右节点称为这个节点的左右孩子。这个节点是它的孩子的双亲(父)节点,
     具有相同父节点的孩子节点互为兄弟
(5)路径、路径长度。
     如果一棵树的一串节点n1 n2 ... nk 具有如下的关系:节点ni是 ni+1 (1=<i<k), 就把 n1 n2 ... nk 称为一条由n1至nk 的路径。这条路径的长度为k-1.
(6)祖先、子孙。

    在树中,如果有一条路径从结点M 到结点N,那么M 就称为N的祖先,而N 称为M 的子孙。

(7)结点的层数。

    规定树的根结点的层数为1,其余结点的层数等于它的双亲结点的层数加1。
(8)树的深度。

     树中所有结点的最大层数称为树的深度。
(9)树的度。

    树中各结点度的最大值称为该树的度。

(10)满二叉树。
 在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子结点都在同一层上,这样的一棵二叉树称作满二叉树.
(11)完全二叉树
  一棵深度为k 的有n 个结点的二叉树,对树中的结点按从上至下、从左到右的顺序进行编号,如果编号为i(1≤i≤n)的结点
  与满二叉树中编号为i 的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树。完全二叉树的特点是:叶子结点只能出现在最下层和次下层,
  且最下层的叶子结点集中在树的左部。显然,一棵满二叉树必定是一棵完全二叉树,而完全二叉树未必是满二叉树。


3 二叉树的一些性质

     1 二叉树的第k层的最大节点数 为2k-1 。

     2 一棵深度为k的二叉树,总节点数最大为2^k -1   (意为2的k次方减1)

     3 一棵具有n个节点的完全二叉树,其深度k为 [logn] +1

          注: 在计算机科学中我们通常选用2作为对数函数的底数(而非自然对数的底数e),一般地在写法上我们可以将这个底数2省略。 [ ] 表示取整运算。

     4  若二叉树是总节点数为n的完全二叉树。对于其中任意的节点i 从上至下,从左至右次编序  (1=<i<=n)

         如果对于i,有i=1 则i节点为根节点,否则如果i/2 >1,则i有父节点,其父节点为i/2。

         如果对于i,有2i<=n 则i有的左孩子,其左孩子为2i ,否则i没有左孩子 。

         如果对于i,有2i+1<=n 则i有右孩子,其右孩子为2i+1,否则i没有右孩子。 

   

对于二叉树的一些基本运算有:

初始化二叉树、 创建二叉树、二叉树左插入,二叉树右插入,二叉树左删除、二叉树右删除、二叉树搜索、二叉树查询遍历 等。


算法的实现依赖于具体的存储结构,下面是基于链表的二叉树基本算法的实现。

C代码

#include <stdio.h>
#include <stdlib.h>
/**
 * 算法的实现依赖于具体的存储结构,当二叉树采用不同的存储结构时,
 * 二叉树链表的基本算法实现
 */

/**
 * 二叉树结构体  节点定义
 */
typedef struct BiTNode {
	char data[20]; //数据域可以存放20个字符
	struct BiTNode *lchild, *rchild; /*左右孩子指针*/
} BiTNode, *BiTree;

/**
 * 初始化建立一个二叉树bt,并使bt指向头结点。在二叉树的根节点前建立头结点,就如同在单链表
 * 前建立头结点的用途一样,可以方便后边操作的实现。
 */
int Initiate(BiTree *bt) {
	if ((*bt = (BiTNode *) malloc(sizeof(BiTNode))) == NULL) {
		return 0;
	}
	*bt->lchild = NULL;
	*bt->rchild = NULL;
	return 1;
}
/**
 * 建立一棵以x 为根结点的数据域信息,以二叉树lbt 和rbt为左右子树的二叉树。
 * 建立成功时返回所建二叉树结点的指针;建立失败时返回空指针。
 */
BiTree Create(char x[20], BiTree lbt, BiTree rbt) {
	BiTree p;
	if ((p = (BiTNode *) malloc(sizeof(BiTNode))) == NULL) {
		return NULL;
	}
	p->data = x;
	p->lchild = lbt;
	p->rchild = rbt;
	return p;
}

/**
 * 将数据域信息为x 的结点插入到二叉树bt 中作为结点parent 的左孩子结点。如果结点parent 原来有左孩子结点,
 *  则将结点parent 原来的左孩子结点作为结点x 的左孩子结点。
 *  InsertR 与InsertL 功能类似,算法略。
 */
BiTree InsertL(BiTree bt, char x[20], BiTree parent) {/*在二叉树bt 的结点parent 的左子树插入结点数据元素x*/
	BiTree p;
	if (parent == NULL) {
		printf("插入出错\n");
		return NULL;
	}
	if ((p = (BiTNode *) malloc(sizeof(BiTNode))) == NULL)
		return NULL;
	p->data = x;
	p->lchild = NULL;
	p->rchild = NULL;
	if (parent->lchild == NULL)
		parent->lchild = p;
	else {
		p->lchild = parent->lchild;
		parent->lchild = p;
	}
	return bt;
}

/**
 *在二叉树bt 中删除结点parent 的左子树。当parent
 *在二叉树bt 或parent的左孩子结点为空时删除失败。删除成功时返回根结点指针;删除失败时返回空指针。
 *
 * DeleteR(bt,parent)功能类同于 DeleteL,只是删除结点parent 的右子树。算法略
 */
BiTree DeleteL(BiTree bt,BiTree parent)
{
	BiTree p;
	if (parent==NULL||parent->lchild==NULL)
	{	printf("删除出错\n");
		return NULL;
	}
	p=parent->lchild;
	parent->lchild=NULL;
	/**
	 * 当p 为非叶子结点时,这样删除仅释放了所删子树根结点的空间,
	 *	若要删除子树分支中的结点,需要用遍历操作来实现
	 */
	free(p);
	return bt;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值