梯度下降公式理解(为什么使用cost function的导数?)

在gradient descent 梯度下降公式中,一般的表达都是如下:
这里写图片描述
之前没有认真思考这个公式为什么这样定义?只理解到学习率如何影响到最小值的获得。
这里写图片描述
但是学习率 α 后为什么用 θ1处的求导呢?在吴恩达的课程论坛中也看到类似的提问:
论坛链接:为什么用这个公式

有个回答很清楚,我直接贴过来了。可以看出,其实可以不必使用cost function的导数。
这里写图片描述

但是用cost fucntion求导肯定有其好处,这篇文章阐述的很清楚,如 链接:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值