Scikit-Learn学习笔记——主要成分分析(PCA)应用:可视化、噪音过滤、人脸识别

PCA是一种常用的无监督算法,常用于降维、数据可视化和噪音过滤。通过选择主成分数量,可以保留数据的主要方差。PCA在人脸识别中,通过特征脸展示,即使在较低维度也能捕获大部分信息。
摘要由CSDN通过智能技术生成

主要成分分析(PCA)

主要成分分析(PCA)可能是应用最广泛的无监督算法之一。虽然PCA是一种非常基础的降维算法,但它仍然是非常有用的工具,尤其适用于数据可视化、噪音过滤、特征抽取和特征工程等领域。由于PCA用途广泛、可解释性强,所以可以有效应用于大量情景和科学中。对于任意高维的数据集,可以从PCA开始,可视化点间的关系、理解数据中的主要变量。PCA并不是一个对每个高维数据集都有效的算法,但是它提供了一条直接且有效的路径,来获得对高维数据的洞察。

用PCA降维

用PCA降维意味着去除一个或多个最小主成份,从而得到一个更低维度且保留最大数据方差的数据投影。

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns;sns.set()

#产生实验数据
rng = np.random.RandomState(1)
x = np.dot(rng.rand(2, 2), rng.randn(2, 200)).T
plt.scatter(x[:, 0], x[:, 1])
plt.axis('equal');

这里写图片描述

#降维
from sklearn.decomposition import PCA
pca = PCA(n_components=1)
pca.fit(x)
x_pca = pca.transform(x)

#可视化降维的效果
x_new = pca.inverse_transform(x_pca)
plt.scatter(x[:, 0], x[:, 1], alpha=0.2)
plt.scatter(x_new[:, 0<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值