我们在本文中将学习一个新的云IDE,它既免费又易于使用。它是Google Colab的升级版,允许你保存项目、使用必要的插件,并在GPU上免费运行生成式模型。
Lightning AI Studio简介
Lightning AI Studio是一个基于云的AI开发平台(类似Google Colab),旨在消除为机器学习项目搭建本地环境的麻烦。
以下是Lightning AI Studio的主要功能:
- 将流行的机器学习工具集成到一个界面中,因此用户不必在不同工具之间进行上下文切换。这便于更轻松地构建易于扩展的AI应用程序和端点。
- 不需要搭建任何环境。用户可以在浏览器中编写代码,或者连接本地IDE(VSCode或PyCharm)。用户还可以在CPU和GPU之间轻松切换,无需改变环境。
- 允许托管和共享使用Streamlit、Gradio、React JS等构建的AI应用程序。它还通过一起编码实现多用户协作。
- 提供了无限的存储空间、上传和共享文件以及连接S3存储桶的功能。
- 可以在使用数千个GPU的大规模环境下训练模型(付费选项)。用户可以大规模并行地运行超参数扫描、数据预处理和模型部署。
- 提供了本地开发体验,同时利用了云基础设施的强大功能。
- 可以在几分钟内发现社区模板(Studios),使用你的数据在云端快速部署、微调和训练模型,无需设置。
云端的Jupyter Notebook / VSCode为训练大语言模型和运行快速推理提供了易于扩展的硬件。
开始入手
你可以在lightning.ai/sign-up创建一个免费帐户。要获得即时验证,请确保使用官方的公司或.edu电子邮箱。我注册了@kdnuggets.com电子邮箱,立即就可以访问。
创建帐户后,遵循几个简单步骤来定制Studio体验。若想获得7小时的免费GPU,你需要验证电话号码。
完成初始步骤后,你将看到一个示例项目,包含一个基本的Python文件。在短短几分钟内,你的Studio将准备好处理图像并微调Renest模型。想开始入手,只需编写代码,并执行该文件。
用户界面(UI)与VSCode非常相似,但右侧面板上有额外的选项。
Lightning AI Studios
Lightning AI平台提供的Studios是由用户设计的项目模板。这些模板包括帮助你开始处理项目的代码、环境设置和数据。你可以在平台上找到各种Studios,比如训练、微调、预处理、推理和超参数扫描模板。用户可以轻松地搜索和浏览这些模板,找到适合需求的模板。
比如说,访问Mistral 7B API。你点击“Get”,等待它完成。
点击“run.ipynb”文件,运行第一个单元格。
在访问Mistral 7B API之后,代码返回结果。要查看客户端代码,请转到服务器文件夹,打开“client.py ”文件。
我经常使用VSCode,发现很容易上手Lightning AI Studio。
Lightning AI Studio插件
如果你熟悉了Jupyter Notebook UI,可以通过点击右侧面板上的Jupyter Notebook按钮来切换IDE,并可以在右侧面板上找到各种各样的Lightning AI Studio插件。
要添加新插件,点击“+”按钮,并从IDE、AI Agents、Training、Serving和Webapps插件中选择。
就是这么简单。现在,你可以享用Studio插件、VSCode和Jupyter Notebook扩展了。
结论
Lightning AI Studio提供了一个完整的平台,以满足你的各种机器学习需求:从试验模型架构到部署应用程序。这个易于使用的平台具备所有必要的功能,不需要拼凑各种工具。
你可以利用云的强大功能和规模,无需学习复杂深奥的云计算或基础设施管理。开发人员已剥离了复杂性,甚至允许没有云专业知识的数据科学家独立开发和部署解决方案。
无论你期望为想法建立原型还是构建生产级应用程序,Lightning AI Studio都能满足需要。免费版允许用户访问所有核心功能,包括加速训练的Studio GPU。这使得Lightning AI Studio成为了学习和创建重要机器学习程序的不二选择。