有向图中打印所有的环路

  最近项目中需要研究了一下有向图的环路问题。一个IT企业中有成千上万个应用,各个应用之间都是相互依赖的,一个用户请求进来后,会调用一系列应用,比如ABBCCD等。这样所有的应用形成一个有向图,那么如果这个有向图中出现了环路,就悲剧了,用户的请求如果进入这个环路,那么他永远也得不到响应。所以就有需要去判断这个应用组成的有向图中是否含有环路,如果有就要打印出所有的环路,想办法将这些环路拆解。

      说简单了,就是算法中的一个简单问题,在有向图中找到所有的环路。请教了宿舍的算法高手just,加上我自己的理解,产生了一些思路:

1.   DFS树,找所有后退边

首先将有向图转化为一颗DFS树,如果碰到后退边,那么肯定存在环,打印之。那么实现的时候利用深度搜索维护一个节点是否被访问的数组visited[],如果搜索到已经被访问过的节点,那么就是一条环。这个可以过滤掉交叉边的情况,因为交叉边的节点还未被访问。搜索的路径用栈来维护,这样方便打印。为了方便,用java实现:

import java.util.ArrayList;
public class test {
	static private final int POINT_NUM = 9;
	static private int[] visited={0,0,0,0,0,0,0,0,0};
	static private int[][] e={
		{0,0,0,0,0,0,0,0,1},
		{0,0,0,1,1,0,0,0,0},
		{1,0,0,0,0,0,0,0,0},
		{0,0,0,0,0,0,0,1,0},
		{0,0,0,0,0,0,0,1,0},
		{0,1,0,0,0,0,0,0,0},
		{1,0,0,0,0,0,0,0,0},
		{0,0,1,0,0,0,1,0,0},
		{0,0,0,0,0,1,0,0,0}};
	static ArrayList<Integer> trace=new ArrayList<Integer>();
	static boolean hasCycle=false;
	public static void main(String[] args) {
		findCycle(0);
		if(!hasCycle)
			System.out.println("No Cycle.");
	}
	static void findCycle(int v)
	{
		if(visited[v] == 1){

			int j=trace.indexOf(v);  

			if(j!=-1)  
			{
				hasCycle=true;
				System.out.print("Cycle:");
				while(j<trace.size())
				{
					System.out.print(trace.get(j)+" ");
					j++;
				}
				System.out.print("\n");
				return;
			}
			return;
		}
		visited[v]=1;
		trace.add(v);

		for(int i=0;i<POINT_NUM;i++)
		{
			if(e[v][i]==1)
				findCycle(i);
		}
		trace.remove(trace.size()-1);
	}
}

大家仔细运行上面的程序会发现,有一部分环路是打印不出来的,为什么呢?问题出在这个visited数组上面,上面程序的逻辑是如果搜索到访问过的节点,则表示找到了一条环。考虑这样的情况,有5个点,连通情况是1->2,2->3, 3->4, 4->5, 5->1, 3->5。这时程序先找到12345这条环,那么栈中的元素从底向上是12345,这时5出栈,4出栈,3指向5,程序执行findCycle(5)时发现,5已经访问过,但是不在栈中,直接return了,所以1235这条环没有找出来。问题的关键就在于5已经访问过了,程序认为已经找到了一条环,实际上这还不是一条环,等走到5指向1时,才发现有了一条新的环。因为这时5已经不在环中,所以这条环没有被发现。那找到问题的关键后,我们进行改进:

import java.util.ArrayList;
public class test {
	static private final int POINT_NUM = 9;
	static private int[] visited={0,0,0,0,0,0,0,0,0};
	static private int[][] e={
		{0,0,0,0,0,0,0,0,1},
		{0,0,0,1,1,0,0,0,0},
		{1,0,0,0,0,0,0,0,0},
		{0,0,0,0,0,0,0,1,0},
		{0,0,0,0,0,0,0,1,0},
		{0,1,0,0,0,0,0,0,0},
		{1,0,0,0,0,0,0,0,0},
		{0,0,1,0,0,0,1,0,0},
		{0,0,0,0,0,1,0,0,0}};
	static ArrayList<Integer> trace=new ArrayList<Integer>();
	static boolean hasCycle=false;
	public static void main(String[] args) {
		findCycle(0);
		if(!hasCycle)
			System.out.println("No Cycle.");
	}
	static void findCycle(int v)
	{
		if(!trace.contains(v) && visited[v] == 1){
			visited[v] = 0;
		}
		if(visited[v] == 1){
			if((j=trace.indexOf(v))!=-1)
			{
				hasCycle=true;
				System.out.print("Cycle:");
				while(j<trace.size())
				{
					System.out.print(trace.get(j)+" ");
					j++;
				}
				System.out.print("\n");
				return;
			}
			return;
		}
		trace.add(v);

		for(int i=0;i<POINT_NUM;i++)
		{
			if(e[v][i]==1)
				findCycle(i);
		}
		trace.remove(trace.size()-1);
	}
}

3.   进一步探索通过上面的改进,程序可以找出所有的环了。我们再来细细琢磨一下这个visited数组,想想它是用来干什么的,它的作用到底是什么?visited数组的作用是,当找到一个已经被访问过的元素时,我们认为找到了一条后退边,即找到了一个环。它本质上的作用是,我们找到的已经访问过的元素是栈中的一个元素,这样肯定找到了一条环。那我们其实不需要visited这个数组了。所以就有了以下的改进:

import java.util.ArrayList;
public class test {
	static private final int POINT_NUM = 9;
	static private int[][] e={
		{0,0,0,0,0,0,0,0,1},
		{0,0,0,1,1,0,0,0,0},
		{1,0,0,0,0,0,0,0,0},
		{0,0,0,0,0,0,0,1,0},
		{0,0,0,0,0,0,0,1,0},
		{0,1,0,0,0,0,0,0,0},
		{1,0,0,0,0,0,0,0,0},
		{0,0,1,0,0,0,1,0,0},
		{0,0,0,0,0,1,0,0,0}};
	static ArrayList<Integer> trace=new ArrayList<Integer>();
	static boolean hasCycle=false;
	public static void main(String[] args) {
		findCycle(0);
		if(!hasCycle)
			System.out.println("No Cycle.");
	}
	static void findCycle(int v)
	{

		int j = trace.indexOf(v);
		if(j!=-1)
		{
			hasCycle=true;
			System.out.print("Cycle:");
			while(j<trace.size())
			{
				System.out.print(trace.get(j)+" ");
				j++;
			}
			System.out.print("\n");
			return;
		}
		trace.add(v);

		for(int i=0;i<POINT_NUM;i++)
		{
			if(e[v][i]==1)
				findCycle(i);
		}
		trace.remove(trace.size()-1);
	}
}
Cycle:0 8 5 1 3 7 2 
Cycle:0 8 5 1 3 7 6 
Cycle:0 8 5 1 4 7 2 
Cycle:0 8 5 1 4 7 6 
sandbox> exited with status 0


在C++生成随机有向图通常涉及到图形算法和随机数生成库的使用。一种常见方法是通过邻接矩阵或邻接列表的数据结构来表示图,并利用`<random>`库来生成随机边连接节点。这里提供一个简单的步骤: 1. 包含必要的头文件: ```cpp #include <iostream> #include <vector> #include <random> #include <algorithm> // for shuffle ``` 2. 定义一些辅助函数,比如生成随机整数、判断边是否合法等。 3. 定义有向图的结构(如邻接列表): ```cpp std::vector<std::vector<int>> adjList; // 使用邻接列表表示有向图 ``` 4. 创建随机数生成器: ```cpp std::default_random_engine generator(std::chrono::system_clock::now().time_since_epoch().count()); std::uniform_int_distribution<> distribution(0, nodes - 1); // 假设nodes是顶点的数量 ``` 5. 生成随机有向图的主函数: ```cpp void generateRandomDirectedGraph(int numVertices, int maxDegree) { adjList.resize(numVertices); // 遍历所有顶点,尝试添加边 for (int i = 0; i < numVertices; ++i) { int degree = std::min(maxDegree, (int)std::rand() % (numVertices - 1) + 1); // 按照最大度限制 std::vector<int> edges(degree); std::iota(edges.begin(), edges.end(), i + 1); // 从i+1开始,避免自 // 打乱边的顺序,增加随机性 std::shuffle(edges.begin(), edges.end(), generator); for (auto &edge : edges) { if (edge != i && adjList[edge].size() < maxDegree) { // 防止形成环路 adjList[i].push_back(edge); } } } } ``` 6. 调用函数并打印结果(如果需要)。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值