HashMap底层结构:
数组+链表(或红黑树)
transient Node<K,V>[] table
1.构造函数
1.1.无参构造方法:
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
可以看到只是设置了一个默认扩容因子(0.75)
1.2.仅指定初始大小:
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
使用了另一个构造方法,同时设定扩容因子为默认值0.75
1.3.同时指定初始大小和扩容因子:
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
先是校验初始大小和扩容因子,然后通过tableSizeFor(int cap)方法获取扩容阈值,继续看tableSizeFor方法
/**
* Returns a power of two size for the given target capacity.
*/
static final int tableSizeFor(int cap) {
// 将cap - 1,为的是处理cap == 2^n的情况
int n = cap - 1;
// 通过5次移位+按位与,将不为0的最高位的1复制到所有的更低位(如1000 -> 1111)
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
// 上面计算出的n==2^n-1,需要+1才是需要的值
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
这个方法的注释已经告诉我们返回的是一个根据参数cap产生的2的幂次方的数。也就是返回的数满足:
①. ≥cap
②. cap ≤ 2^n(n取满足不等式的最小值)
为什么这样计算呢?(以cap>0为例,cap≤0时,原反补码不一样,先不讨论)
例:cap=0b0100 0001
n = cap - 1 -> 0b0100 0000
n |= n >>> 1 -> 0b0110 0000
n |= n >>> 2 -> 0b0111 1000
n |= n >>> 4 -> 0b0111 1111
后面的运算对n的值无影响,然后返回 n+1 = 0b1000 0000,是符合条件的数
第一行n=cap-1是考虑到cap为2的n次幂时,直接运算得到的数是2的n+1次幂,不符合条件,所以先-1,保证cap为2的n次幂时也能得到正确的数。
1.4.入参为Map
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
设置完默认扩容因子后,调用putMapEntries()设置元素
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
if (s > 0) {
if (table == null) { // pre-size
// 根据传入map的大小和扩容因子,算出所需大小
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY);
if (t > threshold)
threshold = tableSizeFor(t);
}
// 大小超过扩容阈值时,需要扩容
else if (s > threshold)
resize();
// 遍历传入的map,put到新Map中
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}
注:初始化时指定了大小的话,扩容阈值等于容量
验证:
import java.lang.reflect.Field;
import java.lang.reflect.Method;
import java.util.HashMap;
import java.util.Map;
public class MapTest {
public static void main(String[] args) throws Exception {
Map<Integer, Integer> map = new HashMap<Integer, Integer>(16, 0.75f);
Method capacity = map.getClass().getDeclaredMethod("capacity");
capacity.setAccessible(true);
Field field = map.getClass().getDeclaredField("threshold");
field.setAccessible(true);
System.out.println("map元素个数:" + map.size() + "\t 容量:" + capacity.invoke(map) + "\t扩容阈值:" + field.get(map));
System.out.println("开始put元素");
for (int i = 0; i < 20; i++) {
map.put(i, i);
System.out.println("map元素个数:" + map.size() + "\t 容量:" + capacity.invoke(map) + "\t扩容阈值:" + field.get(map));
}
}
}
运行结果:
2.put
见注释
public V put(K key, V value) {
// 1.计算key的hash值
return putVal(hash(key), key, value, false, true);
}
/**
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 2.若数组为空,或者数组长度为0,先扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 3.若没有碰撞,直接new Node添加到数组中
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
// 4.以下为hash碰撞(下标碰撞)的情况
Node<K,V> e; K k;
// 4.1.key相同,需要更新,更新操作见5
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 4.2.如果对应节点是红黑树,走红黑树的流程
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
// 4.3.如果是链表,遍历链表
for (int binCount = 0; ; ++binCount) {
// 4.3.1.若已遍历到链表尾部,说明没有相同的key,添加元素,此时e==null
if ((e = p.next) == null) {
// 4.3.1.1.在链表长度达到8之前,直接添加节点到链表尾部
p.next = newNode(hash, key, value, null);
// 4.3.1.2.当链表长度达到8时,将链表转换成红黑树(不一定,判断条件在treeifyBin方法中)
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
// 4.3.2.若找到相同的key,跳出循环,在5更新
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
// 4.3.3.下一个节点(p = p.next)
p = e;
}
}
// 4.4.更新及后续处理统一放在此处
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
// 5.扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
/**
* Replaces all linked nodes in bin at index for given hash unless
* table is too small, in which case resizes instead.
*/
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
// 结合putVal的条件,可以看出,只有当链表长度达到8,且HashMap容量达到64时,才将链表转换成红黑树,在此之前仅进行扩容
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
3.get
get流程简单,见注释
public V get(Object key) {
Node<K,V> e;
// 1.获取key的hash值
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
/**
* Implements Map.get and related methods
*
* @param hash hash for key
* @param key the key
* @return the node, or null if none
*/
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
// 2.获取hash值对应下标上的第一个元素
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 3.判断第一个元素的key是不是要查找的key
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
// 4.如果是红黑树,走红黑树的查找流程
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
// 5.如果是链表,遍历链表,直至找到元素或者达到链表尾部
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
// 6.如果key不存在,返回null
return null;
}
4.resize()函数
见注释
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
// 原有容量达到上限,仅将阈值设置为最大值,其它不变
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 新的容量和阈值为旧容量和阈值的2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
// 除了入参为map的构造方法,其它构造方法均未初始化table数组(oldCap == 0),除了无参构造方法,oldThr的值等于tableSize,所以直接赋值
newCap = oldThr;
else { // zero initial threshold signifies using defaults
// 无参构造方法仅设置了扩容因子为默认值,容量和阈值都用默认值
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 设置新的阈值
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
// 开始扩容
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
// 没有hash碰撞的元素,直接重新计算下标
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
// 对于节点是红黑树的处理
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
// hashMap的链表采用的是头插法,所以table数组元素是链表头
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
// 拆分链表为下标不变的链表和下标变为原下标+oldCap的链表
do {
next = e.next;
// loTail为链表中下标不需要变化的节点组成的新链表的尾部
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
// hiTail为链表中下标需要变化的节点组成的新链表的尾部
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 下标没有变化(对应的高一位hash值为0)
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 下标为原下标+oldCap(对应的高一位hash值为1)
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
说明:
4.1.下标的计算
index = e.hash & (newCap - 1)
如果newCap=32 -> 0b00010000,newCap-1=0b00001111,按位与以后,得到的结果必然在 [0,newCap-1] 之间,不会发生下标越界的问题。
4.2.扩容后的下标问题
假设:oldCap=16,newCap=32,loKey.hash=0b1010 0101,hiKey.hash=0b0111 1001
oldCap-1=15 -> 0b0000 1111, newCap-1=31 -> 0b0001 1111
loKey.hash & (oldCap - 1) = 0b 0000 0101
hiKey.hash & (oldCap - 1) = 0b 0000 1001
loKey.hash & (newCap- 1) = 0b 0000 0101
hiKey.hash & (newCap - 1) = 0b 0001 1001
可以发现,扩容前后下标是否变化,取决于key.hash值从右至左的第5位的值,且有变化的下标newInex = oldIndex + oldCap。由于hash值均匀分布,所以可以认为下标变化和不变化的分布也是均匀的。
关于HashMap的容量为2的n次幂的原因,我觉得是以下两个:
1.元素的分布更均匀,hash碰撞的几率更小;
2.计算下标的效率高(位运算)。
注:我看到网上有说法认为容量取2的n次幂可以只移动一半的元素,其实是不对的,虽然从扩容前后的table数组来看,(均匀分布情况下)的确只有一半的元素位置发生了变化,但是table是一个node数组,而数组长度一旦确定是无法改变的,从resize的代码来看,也是把所有的元素都从oldTab移动到newTab中,不存在“只移动一半元素”的做法。
5.containsKey和containsValue
5.1.containsKey复用了get方法中调用的getNode方法
public boolean containsKey(Object key) {
return getNode(hash(key), key) != null;
}
5.2.containsValue遍历所有value
public boolean containsValue(Object value) {
Node<K,V>[] tab; V v;
if ((tab = table) != null && size > 0) {
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next) {
if ((v = e.value) == value ||
(value != null && value.equals(v)))
return true;
}
}
}
return false;
}
显而易见,containsValue的效率比containsKey的效率低得多(o(n) vs o(1) )。