HashMap源码浅析

HashMap底层结构:

数组+链表(或红黑树)

transient Node<K,V>[] table

 

1.构造函数

1.1.无参构造方法:

    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

可以看到只是设置了一个默认扩容因子(0.75)

1.2.仅指定初始大小:

public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

使用了另一个构造方法,同时设定扩容因子为默认值0.75

1.3.同时指定初始大小和扩容因子:

    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

先是校验初始大小和扩容因子,然后通过tableSizeFor(int cap)方法获取扩容阈值,继续看tableSizeFor方法

    /**
     * Returns a power of two size for the given target capacity.
     */
    static final int tableSizeFor(int cap) {
        // 将cap - 1,为的是处理cap == 2^n的情况
        int n = cap - 1;
        // 通过5次移位+按位与,将不为0的最高位的1复制到所有的更低位(如1000 -> 1111)
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        // 上面计算出的n==2^n-1,需要+1才是需要的值
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

这个方法的注释已经告诉我们返回的是一个根据参数cap产生的2的幂次方的数。也就是返回的数满足:

①. ≥cap

②. cap ≤ 2^n(n取满足不等式的最小值)

为什么这样计算呢?(以cap>0为例,cap≤0时,原反补码不一样,先不讨论)

例:cap=0b0100 0001

n = cap - 1 -> 0b0100 0000

n |= n >>> 1 -> 0b0110 0000

n |= n >>> 2 -> 0b0111 1000

n |= n >>> 4 -> 0b0111 1111

后面的运算对n的值无影响,然后返回 n+1 = 0b1000 0000,是符合条件的数

第一行n=cap-1是考虑到cap为2的n次幂时,直接运算得到的数是2的n+1次幂,不符合条件,所以先-1,保证cap为2的n次幂时也能得到正确的数。

 

1.4.入参为Map

    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

设置完默认扩容因子后,调用putMapEntries()设置元素

    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            if (table == null) { // pre-size
                // 根据传入map的大小和扩容因子,算出所需大小
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                         (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);
            }
            // 大小超过扩容阈值时,需要扩容
            else if (s > threshold)
                resize();
            // 遍历传入的map,put到新Map中
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

注:初始化时指定了大小的话,扩容阈值等于容量

验证:

import java.lang.reflect.Field;
import java.lang.reflect.Method;
import java.util.HashMap;
import java.util.Map;

public class MapTest {
    public static void main(String[] args) throws Exception {
        Map<Integer, Integer> map = new HashMap<Integer, Integer>(16, 0.75f);
        Method capacity = map.getClass().getDeclaredMethod("capacity");
        capacity.setAccessible(true);
        Field field = map.getClass().getDeclaredField("threshold");
        field.setAccessible(true);

        System.out.println("map元素个数:" + map.size() + "\t 容量:" + capacity.invoke(map) + "\t扩容阈值:" + field.get(map));
        System.out.println("开始put元素");

        for (int i = 0; i < 20; i++) {
            map.put(i, i);
            System.out.println("map元素个数:" + map.size() + "\t 容量:" + capacity.invoke(map) + "\t扩容阈值:" + field.get(map));
        }
    }
}

运行结果:

 

2.put

见注释

    public V put(K key, V value) {
        // 1.计算key的hash值
        return putVal(hash(key), key, value, false, true);
    }

    /**
     * Implements Map.put and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to put
     * @param onlyIfAbsent if true, don't change existing value
     * @param evict if false, the table is in creation mode.
     * @return previous value, or null if none
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        // 2.若数组为空,或者数组长度为0,先扩容
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        // 3.若没有碰撞,直接new Node添加到数组中
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            // 4.以下为hash碰撞(下标碰撞)的情况
            Node<K,V> e; K k;
            // 4.1.key相同,需要更新,更新操作见5
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            // 4.2.如果对应节点是红黑树,走红黑树的流程
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                // 4.3.如果是链表,遍历链表
                for (int binCount = 0; ; ++binCount) {
                    // 4.3.1.若已遍历到链表尾部,说明没有相同的key,添加元素,此时e==null
                    if ((e = p.next) == null) {
                        // 4.3.1.1.在链表长度达到8之前,直接添加节点到链表尾部
                        p.next = newNode(hash, key, value, null);
                        // 4.3.1.2.当链表长度达到8时,将链表转换成红黑树(不一定,判断条件在treeifyBin方法中)
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    // 4.3.2.若找到相同的key,跳出循环,在5更新
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    // 4.3.3.下一个节点(p = p.next)
                    p = e;
                }
            }
            // 4.4.更新及后续处理统一放在此处
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        // 5.扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

    /**
     * Replaces all linked nodes in bin at index for given hash unless
     * table is too small, in which case resizes instead.
     */
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        // 结合putVal的条件,可以看出,只有当链表长度达到8,且HashMap容量达到64时,才将链表转换成红黑树,在此之前仅进行扩容
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }

 

3.get

get流程简单,见注释

    public V get(Object key) {
        Node<K,V> e;
        // 1.获取key的hash值
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    /**
     * Implements Map.get and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @return the node, or null if none
     */
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        // 2.获取hash值对应下标上的第一个元素
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            // 3.判断第一个元素的key是不是要查找的key
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                // 4.如果是红黑树,走红黑树的查找流程
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                // 5.如果是链表,遍历链表,直至找到元素或者达到链表尾部
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        // 6.如果key不存在,返回null
        return null;
    }

 

4.resize()函数

见注释

    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            // 原有容量达到上限,仅将阈值设置为最大值,其它不变
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            // 新的容量和阈值为旧容量和阈值的2倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            // 除了入参为map的构造方法,其它构造方法均未初始化table数组(oldCap == 0),除了无参构造方法,oldThr的值等于tableSize,所以直接赋值
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            // 无参构造方法仅设置了扩容因子为默认值,容量和阈值都用默认值
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        // 设置新的阈值
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        // 开始扩容
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        // 没有hash碰撞的元素,直接重新计算下标
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        // 对于节点是红黑树的处理
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        // hashMap的链表采用的是头插法,所以table数组元素是链表头
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        // 拆分链表为下标不变的链表和下标变为原下标+oldCap的链表
                        do {
                            next = e.next;
                            // loTail为链表中下标不需要变化的节点组成的新链表的尾部
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            // hiTail为链表中下标需要变化的节点组成的新链表的尾部
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        // 下标没有变化(对应的高一位hash值为0)
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        // 下标为原下标+oldCap(对应的高一位hash值为1)
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

说明:

4.1.下标的计算

index = e.hash & (newCap - 1)

如果newCap=32 -> 0b00010000,newCap-1=0b00001111,按位与以后,得到的结果必然在 [0,newCap-1] 之间,不会发生下标越界的问题。

4.2.扩容后的下标问题

假设:oldCap=16,newCap=32,loKey.hash=0b1010 0101,hiKey.hash=0b0111 1001

oldCap-1=15 -> 0b0000 1111, newCap-1=31 -> 0b0001 1111

loKey.hash & (oldCap - 1) = 0b 0000 0101

hiKey.hash & (oldCap - 1) = 0b 0000 1001

 

loKey.hash & (newCap- 1) = 0b 0000 0101

hiKey.hash & (newCap - 1) = 0b 0001 1001

可以发现,扩容前后下标是否变化,取决于key.hash值从右至左的第5位的值,且有变化的下标newInex = oldIndex + oldCap。由于hash值均匀分布,所以可以认为下标变化和不变化的分布也是均匀的。

关于HashMap的容量为2的n次幂的原因,我觉得是以下两个:

1.元素的分布更均匀,hash碰撞的几率更小;

2.计算下标的效率高(位运算)。

注:我看到网上有说法认为容量取2的n次幂可以只移动一半的元素,其实是不对的,虽然从扩容前后的table数组来看,(均匀分布情况下)的确只有一半的元素位置发生了变化,但是table是一个node数组,而数组长度一旦确定是无法改变的,从resize的代码来看,也是把所有的元素都从oldTab移动到newTab中,不存在“只移动一半元素”的做法。

 

5.containsKey和containsValue

5.1.containsKey复用了get方法中调用的getNode方法

    public boolean containsKey(Object key) {
        return getNode(hash(key), key) != null;
    }

5.2.containsValue遍历所有value

    public boolean containsValue(Object value) {
        Node<K,V>[] tab; V v;
        if ((tab = table) != null && size > 0) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                    if ((v = e.value) == value ||
                        (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }

显而易见,containsValue的效率比containsKey的效率低得多(o(n) vs o(1) )。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值