flink java提交任务,根据jobname获取jobid,rest获取任务的状态

1.传入jobname:
在这里插入图片描述

public class ReduceDemo {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStreamSource<String> words = env.socketTextStream("localhost", 8888);
        SingleOutputStreamOperator<Tuple2<String, Integer>> wordAndOne = words.map(w -> Tuple2.of(w, 1)).returns(Types.TUPLE(Types.STRING, Types.INT));
        KeyedStream<Tuple2<String, Integer>, Tuple> keyBy = wordAndOne.keyBy(0);
        /*sum*/
        SingleOutputStreamOperator<Tuple2<String, Integer>> reduce = keyBy.reduce(new ReduceFunction<Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> reduce(Tuple2<String, Integer> value1, Tuple2<String, Integer> value2)  {
                String key = value1.f0;
                Integer count1 = value1.f1;
                Integer count2 = value2.f1;
                int count = count1 + count2;
                return Tuple2.of(key, count);
            }
        });
        reduce.print();
        env.execute("cz");
    }
}

2.上传任务:

public class Upjar {
    public static void main(String[] args) throws IOException {
        List<String> arg = new ArrayList<>();
        arg.add("sh");
        arg.add("-c");
        arg.add("./flink run -p 2  -C file://绝对路径 -C file://绝对路径 -C file://绝对路径 -c 主类路径 主类所在jar包的绝对路径\n");
        ProcessBuilder pb = new ProcessBuilder(arg);
        //设置工作目录
        pb.directory(new File("/home/flink/flink-1.10.0/bin"));
        //redirectErrorStream 属性默认值为false,意思是子进程的标准输出和错误输出被发送给两个独立的流,可通过 Process.getInputStream() 和 Process.getErrorStream() 方法来访问
        //值设置为 true,标准错误将与标准输出合并。合并的数据可从 Process.getInputStream() 返回的流读取,而从 Process.getErrorStream() 返回的流读取将直接到达文件尾
        pb.redirectErrorStream(true);
        File log = new File("/home/flink/flink-1.10.0/logs");
        pb.redirectOutput(ProcessBuilder.Redirect.appendTo(log));
        Process p = pb.start();
        assert pb.redirectInput() == ProcessBuilder.Redirect.PIPE;
        //重定向标准输出到日志
        assert pb.redirectOutput().file() == log;
        assert p.getInputStream().read() == -1;

    }
}

3.获取jobid
在这里插入图片描述
通过rest访问根据jobname获取jobid,可使用 apache的httpcomponents,根据返回值获取jobid

public class HttpComponentsForRest {
    static String jobName = "97c5216de4ef4b15b16de3a3ab53fd78";
    static String urlPrefix = "http://192.168.1.127:8081";

    public static void main(String[] args) throws IOException {
        String jobID = getJobID(urlPrefix, jobName);
//        getJobState(urlPrefix, jobID);
//        stop(urlPrefix, jobID);


        try {
            while (true) {
                getJobState(urlPrefix, jobID);
            }
        } catch (IOException e) {
            e.printStackTrace();
        } finally {
            System.out.println("pipeline stop");
        }


    }

    /*若任务的状态为running,则调用api结束任务*/
    public static void stop(String urlPrefix, String jid) throws IOException {
        CloseableHttpResponse stopJob = send(new HttpPatch(urlPrefix + "/jobs/" + jid));
        StatusLine statusLine = stopJob.getStatusLine();
        int statusCode = statusLine.getStatusCode();
        /*202代表执行成功,关闭pipeline*/
        if (statusCode != 202) {
            throw new RuntimeException("当前任务未能正确关闭");
        }

    }

    /*判断当前任务的状态   "state": "RUNNING" */
    public static void getJobState(String urlPrefix, String jid) throws IOException {
        CloseableHttpResponse getJobState = send(new HttpGet(urlPrefix + "/jobs/" + jid));
        String getJobStateRes = transform(getJobState);
        JSONObject jsonObject = JSON.parseObject(getJobStateRes);
        String state = jsonObject.getString("state");
        if (!"RUNNING".equals(state)) {
            throw new RuntimeException("当前任务处于停止或故障状态");
        }
    }

    /*根据jobname获取jobid*/
    public static String getJobID(String urlPrefix, String jobName) throws IOException {
        CloseableHttpResponse getJobID = send(new HttpGet(urlPrefix + "/jobs/overview"));
        String getJobIDRes = transform(getJobID);
        JSONObject res = JSON.parseObject(getJobIDRes);
        JSONArray jobs = res.getJSONArray("jobs");
        String jid = null;
        for (int i = 0; i < jobs.size(); i++) {
            JSONObject jsonObject = (JSONObject) jobs.get(i);
            String name = (String) jsonObject.get("name");
            if (name.equals(jobName)) {
                jid = (String) jsonObject.get("jid");
                break;
            }
        }
        if (jid == null || jid.equals("")) {
            throw new RuntimeException("pipeline在flink中没有对应的任务");
        }
        return jid;
    }

    public static CloseableHttpResponse send(HttpRequestBase httpRequestBase) throws IOException {
        CloseableHttpClient httpclient = HttpClients.createDefault();
        CloseableHttpResponse response = httpclient.execute(httpRequestBase);
        return response;
    }

    public static String transform(CloseableHttpResponse response) throws IOException {
        HttpEntity entity = response.getEntity();
        String result = EntityUtils.toString(entity);
        return result;
    }


}

关于flink中任务通过rest访问控制状态,可参考官方文档

要将任务提交到已启动的 Flink 服务上执行,可以使用 Flink 提供的命令行工具或编写代码来进行提交。 1. 使用命令行工具提交任务: - 打开终端或命令提示符,并进入 Flink 的安装目录。 - 使用以下命令提交任务: ``` ./bin/flink run -m <flink-master-address:port> -c <main-class> <jar-file> [arguments] ``` 其中,`<flink-master-address:port>` 是 Flink 主节点的地址和端口(例如,localhost:8081),`<main-class>` 是包含任务入口点的主类名,`<jar-file>` 是包含任务代码的 JAR 文件,`[arguments]` 是可选的任务参数。 2. 使用 Java 代码提交任务: - 在 Java 项目中,确保已添加 Flink 的依赖。 - 编写代码以配置和提交任务,例如: ```java import org.apache.flink.api.common.ExecutionConfig; import org.apache.flink.api.common.JobExecutionResult; import org.apache.flink.api.java.ExecutionEnvironment; public class SubmitJobExample { public static void main(String[] args) throws Exception { ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(4); // 设置并行度 // 构建任务逻辑 // ... JobExecutionResult result = env.execute(); // 处理任务执行结果 // ... } } ``` - 在代码中指定 Flink 主节点的地址和端口,例如: ```java env.execute("localhost:8081"); ``` - 构建并运行代码,它将连接到指定的 Flink 主节点并提交任务。 无论使用命令行工具还是编写代码,都需要确保 Flink 服务已启动并正在运行,并且能够与 Flink 服务通信。任务提交后,Flink根据配置在集群中执行任务,并返回相应的执行结果。 请注意,在提交任务之前,您需要编写或准备好包含任务逻辑的 JAR 文件,并确保 Flink 集群能够访问该文件。此外,还可以根据任务的需求和配置来设置其他参数,如并行度、资源配置等。详细信息可以参考 Flink 官方文档中关于任务提交的部分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

但行益事莫问前程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值