目录
1理论背景编辑
数学上
,两个
整数除以同一个整数,若得相同
余数,则二整数
同余(英文:Modular arithmetic;德文:Kongruenz)。同余
理论常被用于
数论中。最先引用同余的概念与符号者为
德国
数学家
高斯。同余理论是
初等数论的重要组成部分,是研究整数问题的重要
工具之一,利用同余来
论证某些整除性的问题是很
简便的。同余是
数学竞赛的重要组成部分。
2同余符号编辑
两个整数a、b,若它们除以整数m所得的余数相等,则称a与b对于
模m同余或a同余于b模m
记作 a≡b (mod m)
读作 a同余于b模m,或读作a与b对模m同余。
例如 26≡2 (mod 12)
【定义】设m是大于1的正整数,a、b是整数,如果m|(a-b),则称a与b关于模m同余,记作a≡b(mod m),读作a与b对模m同余.
显然,有如下事实
(1)若a≡0(mod m),则m|a;
(2)a≡b(mod m)等价于a与b分别用m去除,余数相同。
【证明】
充分性: m|(a-b)——> a≡b(mod m)
设a=mq1+r1,b=mq2+r2
且0≤r1,r2<m
∵ m|(a-b)
又a-b=m(q1-q2)+(r1-r2).
∴必有常数n使得(r1-r2)=mn
则有m|(r1-r2).
∵0≤r1,r2<m,
∴0≤|r1-r2|<m
∴r1-r2=0
即r1=r2.
故a≡b(mod m).
必要性:a≡b(mod m)——>m|(a-b)
设a,b用m去除余数为r,
即a=mq1+r,b=mq2+r.
∵a-b=m(q1-q2)
∴m|(a-b).
3性质编辑
1
反身性 a≡a (mod m)
2
对称性 若a≡b(mod m),则b≡a (mod m)
3
传递性 若a≡b (mod m),b≡c (mod m),则a≡c (mod m)
4 同余式相加 若a≡b (mod m),c≡d(mod m),则a+-c≡b+-d (mod m)
5 同余式相乘 若a≡b (mod m),c≡d(mod m),则ac≡bd (mod m)
【
证明
】上述性质很容易证明,下面仅证明(3).
∵a≡b(mod m)∴m|(a-b) 同理m|(b-c),
∴m|[(a-b)+(b-c)]∴m|(a-c).
故a≡c(mod m).
4
线性运算如果a ≡ b (mod m),c ≡ d (mod m),那么(1)a ± c ≡ b ± d (mod m),(2)a * c ≡ b * d (mod m)
【证明】(1)∵a≡b(mod m),
∴m|(a-b) 同理 m|(c-d)
∴m|[(a-b)±(c-d)]
∴m|[(a±c)-(b±d)]
∴a ± c ≡ b ± d (mod m)
(2)∵ac-bd=ac-bc+bc-bd=c(a-b)+b(c-d)
又 m|(a-b) , m|(c-d)
∴m|(ac-bd)
∴a * c ≡ b * d (mod m)
特殊地 ,gcd(c,m)=1 则a ≡ b (mod m)
6 幂运算如果a ≡ b (mod m),那么a^n ≡ b^n (mod m)
7 若a ≡ b (mod m),n|m,则 a ≡ b (mod n)
8 若a ≡ b (mod mi) (i=1,2...n) 则 a ≡ b (mod [m1,m2,...mn]) 其中[m1,m2,...mn]表示m1,m2,...mn的
最小公倍数
9
欧拉定理
设a,m∈N,(a,m)=1,则a^(φ(m))≡1(mod m)
(注:φ(m)指模m的
简系个数, φ(m)=m-1, 如果m是素数;φ(m=q1^r1 * q2^r2 * ...*qi^ri)=m (1-1/q1)(1-1/q2)...(1-1/qi))
(但是当p|a时不
等价)
10 中国剩余定理
{xj≡1(mod mj)
{xj≡0(mod mi) i不等于j
令x为从1到najxj的
和,则x适合下列联立同余式
x≡aj(mod mj), j=1,2,3,.....,n
4相关定理编辑
一次
同余式和
孙子定理 同余式的求解中,一次同余式是最
基本的。设整系数
n次(
n>0)多项式
ƒ(
x)=
αn
x+…+
α1
x+
α0,m是一个
正整数且不能整除
αn,则
(1)叫做模m的
n次
同余式。如果整数
α是(1)的解且
α≡
α┡(mod m),那么
α┡也是(1)的解,因此,(1)的不同解是指满足(1)的模 m互不同余的数。对于一次同余式
αx≡
b(mod m)有解的充分必要条件是(
α,m)│
b),若有解则有(
α,m)个解。一次
同余式组是指
。 (2)
素数为模的
同余式 关于素数为模的同余式,1770年,J.-L.拉格朗日证明了如下
定理:设
p是素数,那么模
p的
n次同余式的解数不大于
n(重解也计算在内)。人们称之为
拉格朗日定理。由此立即可以得威尔森定理:如果
p是素数,那么(
p-1)!+1≡0(mod
p)。因为
x-1≡0(mod
p)有
p-1个解1,…,
p-1,故由拉格朗日定理可得
将
x=0代入上式得-1≡(-1)(
p-1)!(mod
p),这就证明了威尔森定理。威尔森定理的
逆定理也是成立的,可用
反证法简单证出。用
拉格朗日定理还可证明:当
p≥5是一个素数时,则有。这个定理是1862年,由J.沃斯顿霍姆证明的。
设
ƒ(
x1,
x2,…,
xn)是
n元整系数多项式,
p是一个奇素数,对于同余式
ƒ(
x
1,
x
2,…,
x
n) ≡0(mod
p)的解(
x
1,
x
2,…,
x
n)(0≤
xj<
p,
j=1,2,…,
n)的个数
N的研究,是数论的重要课题之一。
早在1801年,C.F.高斯就研究了同余式
αx-
b)
y≡1(mod
p)的解的个数,这里
p≡1(mod 3)和同余式
αx-
b)
y≡1(mod
p)的解的个数,这里
p≡1(mod 4)。
设
ƒ(
x)模
p无重因式,1924年,E.阿廷猜想同余式
y≡
ƒ(
x)(mod
p),在
ƒ(
x)的次数为3和4时,
N分别满,1936年,H.哈塞证明了这一猜想,并且还证明了对于一般含
q个元的有限域,把以上两式中
p换成
q,也是对的。1948年,韦伊对于一般的
ƒ(
x,
y)=0在
有限域上得到类似的结果, 他猜想对于
ƒ(
x
1,
x
2,…,
x
n)=0也有类似的结果。1973年,P.德利涅证明了韦伊猜想。他的杰出工作获得了1978年的国际数学家会议的费尔兹奖。
——转自 http://baike.baidu.com/view/79282.htm