poj2785 二分查找

题目大意:给定n行数(n<=4000),每行4个数。从这4列中,每列选择一个数使其和为0

暴力枚举 O(n^4)会tle。
优化:枚举第1,2列算出总和s1[],枚举第3,4列算出总和s2[]。然后枚举s1[],在s2[]中二分查找等于-s1[]的数即可 O(n^2log(n^2))

第一次WA:没有认识到,s2[]数组中有相同的数,所以找到一个就++ans。
正解:在s2[]中找到第一个>key的位置pos1,再找到第一个>=key的位置pos2,则ans+=(pos1-pos2);

#include <cstdio>
#include <algorithm>

using namespace std;
const int N = 4e3+5;
const int M = 16e6+5;
int a[5][N];
int s1[M],s2[M];
int n;

int upper_find(int l, int r, int key)
{
    while(l<=r)
    {
        int mid = (l+r)>>1;
        if(s2[mid]>key) r = mid-1;
        else l = mid+1;
    }
    return r+1;
}

int lower_find(int l, int r, int key)
{
    while(l<=r)
    {
        int mid = (l+r)>>1;
        if(s2[mid]>=key) r = mid-1;
        else l = mid+1;
    }
    return r+1;
}

int main()
{
    scanf("%d", &n);
    for(int i = 1; i <= n; ++i)
        scanf("%d %d %d %d", &a[1][i], &a[2][i], &a[3][i], &a[4][i]);
    int tot = 0;
    for(int i = 1; i <= n; ++i)
        for(int j = 1; j <= n; ++j)
            s1[++tot] = a[1][i]+a[2][j];
    tot = 0;
    for(int i = 1; i <= n; ++i)
        for(int j = 1; j <= n; ++j)
            s2[++tot] = a[3][i]+a[4][j];
    int ans = 0;
    sort(s2+1, s2+tot+1);
    for(int i = 1; i <= tot; ++i)
        ans += upper_find(1, tot, -s1[i])-lower_find(1, tot, -s1[i]);
    printf("%d\n", ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值