一、核心架构与制程
A100:基于Ampere架构(7nm制程),配备6912个CUDA核心和432个Tensor核心,支持第三代NVLink互联技术12。
H100:采用Hopper架构(4nm制程),CUDA核心数提升至16896个,Tensor核心增至528个,引入第四代NVLink(带宽900GB/s)和Transformer Engine优化12。
H800:同为Hopper架构,计算核心与H100一致,但NVLink带宽受限(约为H100的50%),专为中国市场设计以符合出口管制16。
二、显存与带宽性能
指标 A100 H100 H800
显存容量 40GB/80GB HBM2e 80GB HBM3 80GB HBM3
显存带宽 1.55TB/s 3.35TB/s 受限(约1.6TB/s)
互联带宽 第三代NVLink 第四代NVLink 受限NVLink
H100的HBM3显存带宽较A100提升116%,支持大规模模型训练;H800虽保留HBM3显存,但带宽被限制至接近A100水平15。
H100的第四代NVLink可实现多服务器GPU集群扩展(最多256卡),而H800的互联带宽不足可能影响多卡协同效率25。
三、算力指标对比
算力类型
指标 A100 H100 H800
FP32算力 312 TFLOPS 680 TFLOPS 280 TFLOPS
Tensor算力 624 TOPS 1979 TOPS 749 TOPS
FP8支持 不支持 支持 支持
H100的FP8精度计算能力使其在大模型训练中效率提升数倍,H800的Tensor算力约为H100的38%,但仍显著高于A10034。
A100在FP32通用计算中仍具性价比优势,而H800因算力受限更适合推理或中小规模训练38。
四、典型应用场景
A100:通用AI训练/推理、科学计算、中等规模模型(如ResNet-50)。
H100:千亿参数大模型训练(如GPT-4)、多服务器集群扩展、FP8精度优化场景。
H800:高并发推理、国产化替代场景、带宽受限环境下的分布式训练。
五、能效与成本权衡
能效比:H100的4nm制程使其功耗优化30%,单位算力能耗低于A100;H800因带宽限制,能效比略低于H100。
采购成本(美元):A100均价约2万元,H100价格高出50%以上,H800定价介于两者之间。
型号 官方/合规渠道价格 非合规渠道价格
A100 5万-8万 2万-3万(二手)
H100 26万-30万 25万-28万
H800 15万-18万 无稳定供应
总结建议
大规模训练首选H100:其高带宽、FP8加速和多GPU扩展能力可显著缩短训练周期。
推理场景选H800:通过负载均衡优化可实现高吞吐,成本较H100降低30%。
预算有限选A100:在中等规模任务中仍具竞争力,且生态兼容性更广。