解决Ubantu22.04中sudo apt-get update更新失败的问题(自动更新)

文章讲述了在遇到错误代码时,如何通过切换到国内的阿里云或中科大镜像源来更新系统。用户需选择镜像源,确保网络IPv方式为自动,然后运行sudoapt-getupdate命令以顺利完成更新过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

错误代码如下:

忽略:1 http://packages.microsoft.com/repos/code stable InRelease 

打开软件和更新

 

 点开下载自下拉条,推荐选取国内的阿里云、中科大镜像源,选取完毕后点击关闭会提示更新,点击更新。更新状态下,网络IPV方式应为自动。更新完毕后在终端里输入sudo apt-get update即可成功。

 

### 安装 CUDA 11.8 使用 Docker 的方法 #### 准备工作 为了在 Ubuntu 22.04 上通过 Docker 安装并配置 CUDA 11.8,需先确保主机已安装 Docker 和 NVIDIA Container Toolkit。 #### 安装 Docker 如果尚未安装 Docker,则可以通过以下命令完成安装: ```bash sudo apt-y ca-certificates curl gnupg lsb-release curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null sudo apt-get update && sudo apt-get install docker-ce docker-ce-cli containerd.io ``` #### 安装 NVIDIA Container Toolkit NVIDIA Container Toolkit 支持 GPU 加速容器化应用。按照官方指南操作可获得最佳效果[^1]。 ```bash distribution=$(. /etc/os-release;echo $ID$VERSION_ID) curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit sudo systemctl restart docker ``` #### 启动带有 CUDA 11.8 的 Docker 镜像 拉取包含所需版本 CUDA 工具包的基础镜像,并启动容器实例来验证设置是否成功。 ```bash docker pull nvcr.io/nvidia/cuda:11.8.0-base-ubuntu22.04 docker run --rm --gpus all -it nvcr.io/nvidia/cuda:11.8.0-base-ubuntu22.04 nvidia-smi ``` 上述命令会创建一个新的交互式 shell 并执行 `nvidia-smi` 命令测试 GPU 是否正常工作。 #### CUDNN 安装 (如有必要) 对于某些特定需求的应用场景可能还需要额外安装 cuDNN 库,在这种情况下可以参照之前提到的手动复制头文件和库的方式处理,不过更推荐的方法是在构建自定义 Dockerfile 时直接基于支持相应版本的官方镜像进行扩展[^2]。 例如: ```dockerfile FROM nvcr.io/nvidia/cuda:11.8.0-cudnn8-devel-ubuntu22.04 WORKDIR /workspace COPY . . RUN echo 'export PATH=/opt/conda/bin:$PATH' >> ~/.bashrc \ && source ~/.bashrc \ && conda env create -f environment.yml \ && conda activate myenvname CMD ["bash"] ``` 此 Dockerfile 将使用预编译好的含有 CUDA 11.8 及 cuDNN 8 开发工具链的镜像作为基础层,并允许进一步定制开发环境[^3]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lisan_离散

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值