Warmup and Decay是深度学习中模型调参的常用trick。本文将简单介绍Warmup and Decay以及如何在keras_bert中使用它们。
什么是warmup and decay?
Warmup and Decay是模型训练过程中,一种学习率(learning rate)的调整策略。
Warmup是在ResNet论文中提到的一种学习率预热的方法,它在训练开始的时候先选择使用一个较小的学习率,训练了一些epoches或者steps(比如4个epoches,10000steps),再修改为预先设置的学习来进行训练。
同理,Decay是学习率衰减方法,它指定在训练到一定epoches或者steps后,按照线性或者余弦函数等方式,将学习率降低至指定值。一般,使用Warmup and Decay,学习率会遵循从小到大,再减小的规律。
由于刚开始训练时,模型的权重(weights)是随机初始化的,此时若选择一个较大的学习率,可能带来模型的不稳定(振荡),选择Warmup预热学习率的方式,可以使得开始训练的几个epoches或者一些steps内学习率较小,在预热的小学习率下,模型可以慢慢趋于稳定,等模型相对稳定后再选择预先设置的学习率进行训练,使得模型收敛速度变得更快,模型效果更佳。而当模型训到一定阶段后(比如10个epoch),模型的分布就已经比较固定了,或者说能学到的新东西就比较少了。如果还沿用较大的学习率,就会破坏这种稳定性,用我们通常的话说,就是已经接近损失函数的局部最优值点了,为了靠近这个局部最优值点,我们就要慢慢来。
如何在keras_bert中使用Warmup and Decay?
在keras_bert中,提供了优化器AdamWarmup类,其参数定义如下:
class AdamWarmup(keras.optimizers.Optimizer):
"""Adam optimizer with warmup.
Default parameters follow those provided in the original paper.
# Arguments
decay_steps: Learning rate will decay linearly to zero in decay steps.
warmup_steps: Learning rate will increase linearly to lr in first warmup steps.
learning_rate: float >= 0. Learning rate.
beta_1: float, 0 < beta < 1. Generally close to 1.
beta_2: float, 0 < beta < 1. Generally close to 1.
epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`.
weight_decay: float >= 0. Weight decay.
weight_decay_pattern: A list of strings. The substring of weight names to be decayed.
All weights will be decayed if it is None.
amsgrad: boolean. Whether to apply the AMSGrad variant of this

本文介绍了深度学习中WarmupandDecay学习率调整策略,详细阐述了其原理和作用,并展示了在keras_bert库中如何使用AdamWarmup优化器实现这一策略。通过实例对比,说明了WarmupandDecay在序列标注任务中的效果提升。
最低0.47元/天 解锁文章
886

被折叠的 条评论
为什么被折叠?



