时间序列分析技巧(二):ARIMA模型建模步骤总结

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972

   个人介绍: 研一|统计学|干货分享
         擅长Python、Matlab、R等主流编程软件
         累计十余项国家级比赛奖项,参与研究经费10w、40w级横向

1 目的

  该篇为针对时间序列ARIMA模型建模系列技巧:ARIMA模型建模步骤总结。ARIMA模型原理可移步:【时间序列分析】——时序分解定理详解,针对平稳序列的模型选择具体操作理论移步:时间序列分析技巧(一):根据ACF、PACF进行AR、MA、ARMA模型选择

2 ARIMA模型建模流程图解

  平稳序列模型选择图解:

ARIMA模型建模流程图

  ARIMA模型,又称为差分整合移动平均自回归模型,是一种常用的时间序列预测分析方法。下面是ARIMA模型建模的详细步骤:

  1. 可视化观察时间序列数据:首先,通过观察时间序列数据的图形,初步判断数据是否有明显的趋势或周期性。这有助于后续选择合适的模型阶数和参数。

  2. 平稳性检验:时间序列数据必须是平稳的,才能进行ARIMA模型建模。如果数据不平稳,可以通过差分法使其平稳。单位根检验是一种常用的平稳性检验方法,如ADF检验、PP检验等。如果数据不平稳,需要进行差分,直到数据平稳为止。

  3. 确定模型的阶数:ARIMA模型的阶数包括自回归项数§、差分次数(d)和移动平均项数(q)。这些参数可以通过计算自相关系数(ACF)和偏自相关系数(PACF)来初步判断。p值可以从PACF图的最大滞后点来大致判断,q值可以从ACF图的最大滞后点来大致判断。

  4. 建模:根据确定的阶数,建立ARIMA模型。可以使用统计软件(如R、Python等)中的ARIMA函数来建立模型。在建模过程中,还需要选择合适的参数估计方法,如最大似然估计、最小二乘估计等。

  5. 模型检验:建立模型后,需要对模型进行检验,以判断模型是否适合数据。常用的检验方法包括残差检验、拟合优度检验等。如果模型不合适,需要调整模型的阶数或参数,重新建模。

  6. 预测:模型通过检验后,就可以用来进行时间序列预测了。可以使用模型的预测函数来进行预测,并计算预测值的置信区间。

3 ARIMA模型建模实操

  ARIMA模型建模实操,可移步:时间序列分析实战(二):时序的ARMA模型拟合与预测时间序列分析实战(五):ARIMA加法(疏系数)模型建模时间序列分析实战(六):ARIMA乘法(疏系数)模型建模及预测

ARIMA(Autoregressive Integrated Moving Average)模型是一种常用的时间序列预测方法。下面是 ARIMA 模型建模步骤: 1. 导入时间序列数据:首先,将要预测的时间序列数据导入到 Matlab 中,并将其存储在一个向量中。 2. 数据预处理:对时间序列数据进行预处理,以满足 ARIMA 模型的假设条件。这可能包括去除趋势、季节性调整、平稳化等操作。 3. 确定差分阶数(d):使用差分运算来平稳化时间序列数据。通过观察时间序列的自相关图(ACF)和偏自相关图(PACF),确定需要进行几阶差分操作。 4. 确定 AR 和 MA 阶数(p 和 q):使用自相关图(ACF)和偏自相关图(PACF)来确定 AR 和 MA 的阶数。自相关图显示了时间序列与其滞后版本之间的关系,偏自相关图显示了时间序列与其滞后版本之间的关系,消除了其他滞后版本的影响。 5. 估计模型参数:使用确定的差分阶数(d)、AR 阶数(p)和 MA 阶数(q),通过最大似然估计或其他方法估计 ARIMA 模型的参数。 6. 模型检验:对估计的 ARIMA 模型进行残差分析,以验证模型是否符合统计假设。常见的检验方法包括检查残差序列是否为白噪声、是否具有常数方差等。 7. 模型预测:使用估计的 ARIMA 模型进行未来时间点的预测。可以使用 `forecast` 函数来生成预测结果,并可视化结果以评估预测性能。 以上是 ARIMA 模型的基本建模步骤。在实际应用中,可能需要根据数据的特点进行适当的调整和改进。此外,还可以尝试其他时间序列模型,如 SARIMA、GARCH 等,以进一步提高预测精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小墨&晓末

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值