【时间序列分析】——时序分解定理详解

本文详细介绍了时间序列分析中的关键分解方法,包括Wold分解用于离散平稳序列的ARMA模型构建,Gramer分解处理非平稳序列,以及ARIMA模型的差分平稳概念。此外,文章还讨论了因素分解理论,用于识别时序中的长期趋势、循环波动、季节性和随机波动。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972

   个人介绍: 研一|统计学|干货分享
         擅长Python、Matlab、R等主流编程软件
         累计十余项国家级比赛奖项,参与研究经费10w、40w级横向

  该篇文章主要讲解了时间序列的三大分解方法的原理和特点,若有不足,敬请指正!


  Wold分解、Gramer分解、因素分解。Wold分解适用于在平稳序列情形构建ARMA模型,Gramer分解补全了非平稳序列情形的分解方法。同时非平稳序列可以通过差分平稳的方式,进而引用ARMA模型,构成ARIMA模型。因素分解方法对于时序的构成部分更加细分,主要应用在非平稳序列存在季节效应情形。

1 前言

  时间序列分析作为数据科学的重要分支,专注于探索和理解随时间变化的数据背后的模式和结构。在实际应用中,时间序列数据广泛存在于金融、经济、环境科学、医学等众多领域,对于预测未来趋势、制定决策和风险管理至关重要。然而,时间序列数据的复杂性和多样性使得直接从数据中提取有用的信息变得具有挑战性。为了揭示时间序列的内在规律,我们引入了几种关键的时间序列分解定理,包括Wold分解定理、Cramer分解定理和因素分解定理。

  Wold分解定理为离散平稳时间序列提供了一个强大的分析框架。根据这一定理,任何平稳时间序列都可以分解为两部分:一部分是确定性趋势,由可预测的成分组成;另一部分是随机误差,表现为不可预测的随机波动。这种分解有助于我们识别时间序列中的确定性模式,并理解随机因素对时间序列的影响。

  Cramer分解定理进一步扩展了我们对时间序列结构的认识。它指出,任何时间序列都可以分解为确定性趋势和平稳随机误差两部分。这一分解定理强调了时间序列中确定性成分和随机成分之间的区分,为我们提供了更加全面的时间序列分析视角。通过应用Cramer分解定理,我们可以更深入地理解时间序列的动态行为,并提取出有用的信息。

  因素分解定理是时间序列分析的另一个重要工具。它主要关注时间序列中的共同因素和特定因素,通过将时间序列分解为这些因素的组合,我们可以更好地理解时间序列之间的关联和差异。因素分解定理在金融、经济等领域尤为有用,它可以帮助我们识别影响多个时间序列的共同因素,以及每个时间序列特有的因素。

2 Wold分解定理

  Wold分解可以将任意一个离散平稳序列 { x t } \{x_t\} {xt}分解为两个不相关的平稳序列(一个为确定性序列,一个为随机性序列)之和。可以表示为:

x t = V t + ζ t x_t=V_t+\zeta _t xt=Vt+ζt

  其中 V t V_t Vt为确定性序列, ζ t \zeta _t ζt为随机性序列。

  对于确定性序列 V t V_t Vt可以用序列的历史信息的线性组合完全表达。

V t = ∑ j = 0 ∞ ϕ j x t − j V_t=\sum_{j=0}^ \infty \phi _j x_{t-j} Vt=j=0ϕjxtj

  若离散平稳序列 { x t } \{x_t\} {xt}完全由确定性信息组成,即 x t = V t = ∑ j = 0 ∞ ϕ j x t − j x_t=V_t=\sum_{j=0}^ \infty \phi _j x_{t-j} xt=Vt=j=0ϕjxtj,那么该结构即为自回归(AR)模型

  对于随机序列 ζ t \zeta _t ζt,表示当期波动不能被历史信息解读。

ζ t = ∑ j = 0 ∞ θ j ϵ t − j \zeta _t=\sum_{j=0}^ \infty \theta _j \epsilon_{t-j} ζt=j=0θjϵtj

  其中, θ 0 \theta _0 θ0=1, ∑ j = 0 ∞ θ j 2 < ∞ \sum_{j=0}^ \infty \theta _j^2< \infty j=0θj2。{ ϵ t \epsilon_{t} ϵt}为白噪声序列每,是个时期加入的随机信息, ϵ t ∼ i i d N ( 0 , σ 2 ) \epsilon_{t} \overset{iid}{\sim}N(0,\sigma^2) ϵtiidN(0,σ2)

  若离散平稳序列 { x t } \{x_t\} {xt}完全由随机性信息组成,即 x t = ζ t = ∑ j = 0 ∞ θ j ϵ t − j x_t=\zeta _t=\sum_{j=0}^ \infty \theta _j \epsilon_{t-j} xt=ζt=j=0θjϵtj,那么该结构即为移动平均(MA)模型

  若离散平稳序列 { x t } \{x_t\} {xt}完全由确定性及随机性信息同时组成,即 x t = V t + ζ t = ∑ j = 0 ∞ ϕ j x t − j + ∑ j = 0 ∞ θ j ϵ t − j x_t=V_t+\zeta _t=\sum_{j=0}^ \infty \phi _j x_{t-j}+\sum_{j=0}^ \infty \theta _j \epsilon_{t-j} xt=Vt+ζt=j=0ϕjxtj+j=0θjϵtj,那么该结构即为ARMA模型

2 Gramer分解定理

  Gramer分解可以将任何时间序列 { x t } \{x_t\} {xt}分解为由时间 t t t的多项式决定的确定性部分及由白噪声序列决定的随机性部分。可以表示为:

x t = μ t + ϵ t = ∑ j = 0 d β j t j + Ψ ( B ) a t x_t=\mu_t+\epsilon_t=\sum_{j=0}^ d \beta _j t^j+\Psi(B)a_t xt=μt+ϵt=j=0dβjtj+Ψ(B)at

  其中, d < ∞ d< \infty d β 1 , … , β d \beta_1,\dots,\beta_d β1,,βd为常数系数, { a t } \{a_t\} {at}为零均值白噪声序列, B B B为延迟算子。

  均值序列 ∑ j = 0 d β j t j \sum_{j=0}^ d \beta _j t^j j=0dβjtj反映 { x t } \{x_t\} {xt}的受确定性影响, Ψ ( B ) a t \Psi(B)a_t Ψ(B)at反映 { x t } \{x_t\} {xt}的受随机性影响。

  由于:

E ( ϵ t ) = Ψ ( B ) a t = 0 E(\epsilon_t)=\Psi(B)a_t=0 E(ϵt)=Ψ(B)at=0

  所以:

E ( x t ) = E ( μ t ) = ∑ j = 0 d β j t j E(x_t)=E(\mu_t)=\sum_{j=0}^ d \beta _j t^j E(xt)=E(μt)=j=0dβjtj

  平稳序列要求其受到的确定性和随机性影响都是稳定的,而非平稳序列受到的确定性和随机性影响至少有一个方面不是稳定的,Wold分解定理仅适用于平稳序列,而Gramer分解定理对非平稳序列同样适用。

3 ARIMA模型

  ARIMA模型又称为求和自回归移动平均模型。其可以表示为:
{ Φ ( B ) ∇ d x t = Θ ( B ) ϵ t E ( ϵ t ) = 0 , V a r ( ϵ t ) = σ ϵ t 2 , E ( ϵ t ϵ s ) = 0 , s ≠ t E ( x t ϵ t ) = 0 , ∀ s < t \begin{cases}\Phi(B)\nabla^dx_t=\Theta(B)\epsilon_t\\ E(\epsilon_t)=0,Var(\epsilon_t)=\sigma_ {\epsilon _t}^2,E(\epsilon_t\epsilon_s)=0,s≠t\\ E(x_t\epsilon_t)=0,\forall s<t\end{cases} Φ(B)dxt=Θ(B)ϵtE(ϵt)=0,Var(ϵt)=σϵt2,E(ϵtϵs)=0,s=tE(xtϵt)=0,s<t
  其中, ∇ d = ( 1 − B ) d \nabla^d=(1-B)^d d=(1B)d Φ ( B ) = 1 − ϕ 1 B − ⋯ − ϕ p B p \Phi(B)=1-\phi_1B-\dots-\phi_pB^p Φ(B)=1ϕ1BϕpBp,为平稳可逆 A R M A ( p , q ) ARMA(p,q) ARMA(p,q)模型的自回归系数多项式。 Θ ( B ) = 1 − θ 1 B − ⋯ − θ p q q \Theta(B)=1-\theta_1B-\dots-\theta_pq^q Θ(B)=1θ1Bθpqq为平稳可逆 A R M A ( p , q ) ARMA(p,q) ARMA(p,q)模型的移动平均系数多项式。

  ARIMA模型可视为ARMA模型的扩展,即原非平稳序列经过d阶差分后平稳序列。

1.对于非平稳序列,差分次数并不是越多越好,实际运用过程中应对差分阶数选择适当,避免过差分情况。

2.ARIMA模型拟合过程中,若出现部分自相关系数 ϕ j ( 1 ≤ j < p ) \phi_j(1≤j<p) ϕj(1jp),或自相关系数 θ k ( 1 ≤ k < q ) \theta_k(1≤k<q) θk(1kq)为0,那么需要拟合疏ARIMA的稀疏模型。

4 因素分解理论

  因素分解理论认为任何时间序列可以表示为四个部分信息的综合影响:长期趋势、循环波动(通常在经济学中作为经济景气的指标)、季节性变化、随机波动

长期趋势:序列呈现明显的长期递增或递减的趋势。

循环波动:序列呈现从高到低,再从低到高的反复循环波动。

季节性变化:序列呈现和季节变化相关的任意周期性波动。

随机波动:除长期趋势、循环波动、季节性变化外,其他不能用确定性因素解释的序列波动都属于随机波动。

  即,任何时间序列可以用这四个因素的某个函数拟合:

x t = f ( T t , C t , S t , I t ) x_t=f(T_t,C_t,S_t,I_t) xt=f(Tt,Ct,St,It)

  其中,最为常用的两个函数分别为加法函数和乘法函数,又成为加法模型和乘法模型。

  加法模型: x t = T t + C t + S t + I t ) x_t=T_t+C_t+S_t+I_t) xt=Tt+Ct+St+It)

  乘法模型: x t = T t × C t × S t × I t ) x_t=T_t×C_t×S_t×I_t) xt=Tt×Ct×St×It)

  ==由于时序的观测时期不够长导致循环因素和趋势因素难以区分以及某些特殊日期对于部分社会现象和经济现象有显著影响,在观察时期不够长的情形,因素分解理论中的循环波动修改为特殊交易日因素。==同时,四个因素组合的常用函数扩充了

对于无季节效应的非平稳时间序列可利用Gramer分解原理构建ARIMA模型,对于有季节效应的非平稳时间序列可利用因素分解原理构建因素分解模型。

对于存在季节效应的非平稳时间序列情形,可采用X11季节调整模型和Holt-Winters指数平滑模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小墨&晓末

谢谢老板帮助充电!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值