链接: http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=737
石子合并(一)
时间限制:1000 ms | 内存限制:65535 KB
难度:3
关键词: 区间DP
Description
有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。
Input
有多组测试数据,输入到文件结束。 每组测试数据第一行有一个整数n,表示有n堆石子。 接下来的一行有n(0< n < 200)个数,分别表示这n堆石子的数目,用空格隔开
Output
输出总代价的最小值,占单独的一行
SampleInput
3
1 2 3
7
13 7 8 16 21 4 18
SampleOuput
9
239
Analyze
- 第一种实现方式:DP模板:
dp[i][j]: 表示从 第i堆 到 第j堆 总的最小代价。
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + sum[j] - sum[i-1]);
-
优化:平行四边形优化
以后添加。。。。
Code1
#include <cstdio>
#include <climits>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 210
int dp[N][N],sum[N];
int main()
{
int n;
while(~scanf("%d",&n))
{
int a[N];
sum[0]=0;
for(int i=1; i<=n; i++)
{
scanf("%d",&a[i]);
sum[i]=sum[i-1]+a[i];
}
memset(dp,0,sizeof(dp));
int i,j,l,k;
for(l = 2; l <= n; ++l)
{
for(i = 1; i <= n - l + 1; ++i)
{
j = i + l - 1;
dp[i][j] = INT_MAX;
for(k = i; k < j; ++k)
{
dp[i][j] =min(dp[i][j],dp[i][k] + dp[k + 1][j] + sum[j] - sum[i-1]);
}
}
}
printf("%d\n", dp[1][n]);
}
return 0;
}