NYOJ 737 石子合并(一)

链接: http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=737

石子合并(一)

时间限制:1000 ms | 内存限制:65535 KB
难度:3

关键词: 区间DP

Description

有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。

Input

有多组测试数据,输入到文件结束。 每组测试数据第一行有一个整数n,表示有n堆石子。 接下来的一行有n(0< n < 200)个数,分别表示这n堆石子的数目,用空格隔开

Output

输出总代价的最小值,占单独的一行

SampleInput

3
1 2 3
7
13 7 8 16 21 4 18

SampleOuput

9
239

Analyze

  1. 第一种实现方式:DP模板:

dp[i][j]: 表示从 第i堆 到 第j堆 总的最小代价。

dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + sum[j] - sum[i-1]);

  1. 优化:平行四边形优化

    以后添加。。。。

Code1

#include <cstdio>  
#include <climits>  
#include <cstring>  
#include <algorithm>  
using namespace std;  
   
#define N 210  
   
int dp[N][N],sum[N];  
int main()  
{  
   int n;  
   while(~scanf("%d",&n))  
    {  
       int a[N];  
       sum[0]=0;  
       for(int i=1; i<=n; i++)  
       {  
           scanf("%d",&a[i]);  
           sum[i]=sum[i-1]+a[i];  
       }  
       memset(dp,0,sizeof(dp));  
       int i,j,l,k;  
       for(l = 2; l <= n; ++l)  
       {  
           for(i = 1; i <= n - l + 1; ++i)  
           {  
                j = i + l - 1;  
                dp[i][j] = INT_MAX;  
                for(k = i; k < j; ++k)  
                {  
                    dp[i][j] =min(dp[i][j],dp[i][k] + dp[k + 1][j] + sum[j] - sum[i-1]);  
                }  
           }  
       }  
       printf("%d\n", dp[1][n]);  
    }  
   return 0;  
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值