良好的数据管理习惯
1) 对数据的类型进行区分;
2)不同数据专门定点存放,分文件夹管理;
3)所有能模板化的地方模板化,例如,数据文件夹模板化,绘图格式模板化;
4) 数据处理的工具(程序、软件、模板)与数据分开;
5)数据记录越详细越好,一定要定时的整理反馈,完整的整理反馈。
所谓详细,是要达到,完全遗忘,例如一年之后依然知道进行实验的条件。
所谓及时,是指在记忆遗忘之前,例如当天或一周之内。
所谓完整,是指把没有及时补充的细节全部补全;有目标,有假设,有结果,有分析。
数据分类
Rdg: 源数据的工艺数据 raw data of fabrication
Rd: 源数据 raw data
Nd: 规整后数据 Normalized data
Ftm: 绘图格式模板 Figure template for MATLAB
Fd: 可绘图数据 Figure data
Fto: 绘图格式模板 Figure template for Origin
Fdo: Origin数据文件 Figure data in Origin
Fp: 用于展示的数据 Figure for presentation / publish
Fa: 用于初步分析结果的数据 Figure for analysis
分类讨论
Rdg: 源数据的产生数据 raw data of generation(fabrication)
尽量事无巨细的记载数据的来源数据,例如,器件的制备条件,数据采集的条件。
Rd: 源数据 raw data
从测量设备中直接得到的数据。
Nd: 规整后数据 Normalized data
从原始数据中提取出来的可以使用的数据。
Ftm: 绘图格式模板 Figure template for MATLAB
在采用MATLAB画图时采用的格式数据。
Fd: 可绘图数据 Figure data
Nd 经过转化,易于Origin画图的数据,一般是txt格式。
Fto: 绘图格式模板 Figure template for Origin
数据的样式模板。
Fdo: Origin数据文件 Figure data in Origin
Nd 导入Origin产生的工程文件。
Fp: 用于展示的数据 Figure for presentation / publication
可以展示的,可供发表的数据,一般DPI足够,采用emf比较合适。
Fa: 用于初步分析结果的数据 Figure for analysis
可以展示的,用于初步分析结果,结果讨论,快速呈现。
数据的规范
1 在所有条件一致的情况下可以重复。
2 是一个规范的统计结果。
3 可以与业界水平相吻合;也就是符合现有理论,或是符合自己完善的理论。
数据作为证据
科研是一个argument,这个argument是说:
1 在解决一个重要的问题;
2 之前的解决方案没有,或是在某些方面不够好;
3 采用的方案在这些方面有优势,促进了领域发展;
4 这个优势需要在大的参照系里面进行对比;相关的机理也需要引入变量解释;
5 这些对比和解释需要规范的数据来作为证据;
6 这些证据经过合乎逻辑的论证能证明观点,也就是确实促进了领域某一方面的发展。