- 博客(9)
- 收藏
- 关注
原创 Python可视化工具——Plotly的使用
Plotly介绍Plotly是一个强大的开源数据可视化框架,它通过构建web形式的可交互图表展示信息,可创建精美的图表和地图。我是在jupyter notebook里使用的。官网:Plotly: The front end for ML and data science models一般有两种使用Plotly的方式,一是在线输入导入数据操作(Chart-Studio);二是编程操作,这篇文章主要介绍的是一些编程操作。Plotly安装输入命令行:pip install plotly散点
2021-12-21 10:19:16 2530
原创 Open3D三维处理-初步应用
安装pip install open3d一.多角度点云拼接形成整片点云import open3d as o3dimport numpy as npprint("Open3D read Point Cloud")#读点pcd=o3d.io.read_point_cloud("输入3D文件的地址")print(pcd)#拼接点为云o3d.visualization.draw_geometries([pcd],width=800,height=600)运行结果:二...
2021-11-25 20:42:34 636
原创 利用Python进行粗糙的视频字幕识别
一.安装包准备1.安装tesseract-ocr2.添加语言文件tesseract-ocr安装教程参见:Tesseract OCR V5.0安装教程(Windows) - 简书3.pytessetact识别库通过cmd输入pip install pytesseract进行安装。pytesseract包依赖于Tesseract执行文件,需要安装Tesseract,当然Tesseract只能识别标准的ASCII字符串,复杂的验证吗就无法使用pytesseract来读取了。二.字幕
2021-11-16 10:45:18 2419
原创 均值Hash、直方图分镜在Flask框架下的应用
前面的学习咱们都是在Jupyter中进行,PyCharm的引入能提高我们编码的效率,且该IDE提供了一些高级功能,以用于支持Django框架下的专业Web开发。能帮助我们把后台离线运行的结果经过简单排版后输送到网页端。1.Flask应用的基本框架from flask import Flask#引入Flask这个web框架模块@app.route("/")def index(): return "Hi,Flask!"if "__main__"==__name__: a
2021-11-11 23:43:52 675
原创 基于视频的相似图片处理[均值哈希算法相似度、三直方图算法相似度]
一.视频分镜处理操作步骤解释:1.将视频切割为图片,并写入新建空白文件夹。2.判断两张图片的相似度(较复杂的数据判断——均值哈希算法相似度、三直方图算法相似度)。3.遍历视频所有的帧,提取与其他分镜有明显区别的分镜,完成。代码呈现1:import osimport cv2import subprocessimport inspectimport numpy as npos.chdir("d:\lesson6")#把视频打散为图片v_path='video.mp4'
2021-10-21 23:59:48 2425
原创 音视频图像处理应用:粗糙贴图换脸尝试
本周作業:(小组完成)1-圖像处理与人脸识别的结合应用。群里贴图2-每组学会一个新的ffmpeg的命令,用于视音频处理(自学:看文档,搜索等)3-每组学会2个图像处理的函数,贴图4-以上内容写到帖子里(博文)(每人一份)一.图像处理与人脸识别的结合应用:粗糙贴图换脸。应用方法:1.face_recogniton.face_locations识别图1、图2抠图人脸坐标。2.根据坐标框利用Image.crop()从图1人像图中扣出人像。3.由于图1、图2人脸坐标大小不同,如果想要较.
2021-10-14 23:29:11 431
原创 人脸识别(从OpenCV、Dlib到Face-Recongnition)学习
一、OpenCV人脸识别OpenCV是什么?OpenCV是一个用于图像处理、分析、机器视觉方面的开源函数库,可免费适用于科学研究、商业应用。它在人机互动、物体互动、图像分割、人脸识别、动作识别、运动追踪等应用领域具有极大的应用价值。OpenCV的安装直接运行cmd后,输入pipinstall opencv-python,即可完成安装。利用OpenCV识别人脸import cv2import osimport matplotlib.pyplot as pltos.chdir.
2021-09-23 23:35:48 1496
原创 Python文本分析可视化词云图WordCloud练习及错误总结
整体思路:导入待可视化文本文件,分词并统计词频。 筛选出高频词,根据词频降序排列。 根据词频绘制形状词云图。import osprint(os.getcwd())os.chdir("e:\\")print(os.getcwd())首先通过“os.getcwd()”确认当前工作的目录与待分析的文本文件位置是否在同一目录下,并利用“os.chdir()”改变位置,保证操作系统能成功找到文本文件。import jieba#导入jieba库处理中文文本with open("BNYJ
2021-09-16 20:39:29 2017
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人