基于视频的相似图片处理[均值哈希算法相似度、三直方图算法相似度]

该博客介绍了如何处理视频分镜,通过均值哈希算法和三直方图算法计算图片相似度。在视频处理中,将视频切割成图片并使用两种算法来判断帧间差异,从而提取不同分镜。实验结果显示,增加均值哈希的n值会减少导出镜头数,提高速度;而三直方图算法中,n值越小,表示相似度越低,导出镜头更少。
摘要由CSDN通过智能技术生成

一.视频分镜处理

操作步骤解释:

1.将视频切割为图片,并写入新建空白文件夹。

2.判断两张图片的相似度(较复杂的数据判断——均值哈希算法相似度、三直方图算法相似度)。

3.遍历视频所有的帧,提取与其他分镜有明显区别的分镜,完成。

代码呈现1:

import os
import cv2
import subprocess
import inspect
import numpy as np

os.chdir("d:\lesson6")

#把视频打散为图片
v_path='video.mp4'
cap=cv2.VideoCapture(v_path)
frame_count=cap.get(cv2.CAP_PROP_FRAME_COUNT)
for i in range(int(frame_count)):
    _,img=cap.read()
    img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    cv2.imwrite("./pic/{}.jpg".format(i),img)

代码呈现2【均值哈希算法相似度】: 


def aHash(img):
    img=cv2.resize(img,(8,8))#缩放为8*8,便于统一识别
    gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#转换为灰度图
#s为像素和初值为0,hash_str为hash值初值为''
    s=0#数值
    hash_str=""#字符串
#遍历累加求像素和
    for i in range(8):
        for j in range(8):
            s=s+gray[i,j]  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值