一.视频分镜处理
操作步骤解释:
1.将视频切割为图片,并写入新建空白文件夹。
2.判断两张图片的相似度(较复杂的数据判断——均值哈希算法相似度、三直方图算法相似度)。
3.遍历视频所有的帧,提取与其他分镜有明显区别的分镜,完成。
代码呈现1:
import os
import cv2
import subprocess
import inspect
import numpy as np
os.chdir("d:\lesson6")
#把视频打散为图片
v_path='video.mp4'
cap=cv2.VideoCapture(v_path)
frame_count=cap.get(cv2.CAP_PROP_FRAME_COUNT)
for i in range(int(frame_count)):
_,img=cap.read()
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imwrite("./pic/{}.jpg".format(i),img)
代码呈现2【均值哈希算法相似度】:
def aHash(img):
img=cv2.resize(img,(8,8))#缩放为8*8,便于统一识别
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#转换为灰度图
#s为像素和初值为0,hash_str为hash值初值为''
s=0#数值
hash_str=""#字符串
#遍历累加求像素和
for i in range(8):
for j in range(8):
s=s+gray[i,j]