Python文本分析可视化词云图WordCloud练习及错误总结

本文介绍了Python进行文本分析和可视化词云图的步骤。首先,确保正确读取文本文件,使用jieba分词,并在精准模式下自建保留词库。接着,统计词频并筛选高频词。最后,利用PIL库和wordcloud生成词云图,注意背景图的选择和配置参数。在实践中遇到并解决了关于编码、分词模式和背景图的问题。
摘要由CSDN通过智能技术生成

Python文本分析可视化整体思路:

一.导入待可视化文本文件,分词并统计词频。

二.筛选出高频词。

三.根据词频绘制形状词云图。

import os
print(os.getcwd())
os.chdir("e:\\")
print(os.getcwd())

首先通过“os.getcwd()”确认当前工作的目录与待分析的文本文件位置是否在同一目录下,

并利用“os.chdir()”改变位置,保证操作系统能成功找到文本文件。

import jieba#导入jieba库处理中文文本
with open("BNYJ.txt",'r',encoding='utf-8')as f:
          renmin=f.read()#打开文本
seg_list=jieba.cut(renmin,cut_all=False)#以精准模式处理文本的分词
#print('【精准模式】:'+'/'.join(seg_list))
jieba.load_userdict('BLC.txt')#添加保留词,进行二次分词
tf={}#建立空字典,以键值对的形式存放词频统计结果
for seg in seg_list:#遍历分词结果列表
    if seg in tf:
        tf[seg]+=1
    else:
        tf[seg]=1
ci=list(tf.keys())
with op
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值