【DeepSeek应用实践】Ollama Deep Researcher:Ollama平台部署DeepSeek-R1,打造本地AI研究助手_【deepseek应用实践】

系列篇章💥

No.文章
01【DeepSeek应用实践】DeepSeek接入Word、WPS方法详解:无需代码,轻松实现智能办公助手功能
02【DeepSeek应用实践】通义灵码 + DeepSeek:AI 编程助手的实战指南
03【DeepSeek应用实践】Cline集成DeepSeek:开源AI编程助手,终端与Web开发的超强助力
04【DeepSeek开发入门】DeepSeek API 开发初体验
05【DeepSeek开发入门】DeepSeek API高级开发指南(推理与多轮对话机器人实践)
06【DeepSeek开发入门】Function Calling 函数功能应用实战指南
07【DeepSeek部署实战】DeepSeek-R1-Distill-Qwen-7B:本地部署与API服务快速上手
08【DeepSeek部署实战】DeepSeek-R1-Distill-Qwen-7B:Web聊天机器人部署指南
09【DeepSeek部署实战】DeepSeek-R1-Distill-Qwen-7B:基于vLLM 搭建高性能推理服务器
10【DeepSeek部署实战】基于Ollama快速部署DeepSeek-R1系列模型实战指南(Linux)
11【DeepSeek部署实战】基于Ollama+Chatbox零成本部署DeepSeek-R1系列模型攻略(Windows)
12【DeepSeek开发实战】DeepSeek-R1-Distill-Qwen与LangChain的本地大模型应用开发指南
13【DeepSeek部署实战】一键本地推理,DeepSeek-R1 蒸馏模型 + llama.cpp 部署教程
14【DeepSeek应用实践】手把手教程:用 AnythingLLM + Ollama + DeepSeek-R1 搭建本地企业知识库
15【DeepSeek微调实践】DeepSeek-R1大模型基于MS-Swift框架部署/推理/微调实践大全
16【DeepSeek应用实践】Ollama Deep Researcher:Ollama平台部署DeepSeek-R1,打造本地AI研究助手

目录
  • 系列篇章💥
  • 一、前言
  • 二、项目概述
  • 三、主要功能
    • (一)本地化运行与数据隐私保障
    • (二)自动迭代搜索机制
    • (三)研究报告生成功能
    • (四)灵活的配置选项
  • 四、技术原理
    • (一)搜索查询生成
    • (二)信息收集与处理
    • (三)总结与知识缺口识别
    • (四)迭代优化过程
    • (五)报告生成与引用管理
  • 五、应用场景
    • (一)学术研究领域
    • (二)市场分析与商业调研
    • (三)技术调研与开发
  • 六、快速使用
    • (一)安装 Ollama
    • (二)拉取模型
    • (三)克隆项目仓库
    • (四)配置环境变量
    • (五)创建虚拟环境(推荐)
    • (六)安装依赖并启动 LangGraph 服务器
    • (七)使用 LangGraph Studio UI
  • 七、结语
  • 八、相关资源

一、前言

在当今数字化信息爆炸的时代,高效获取和整理信息成为了科研工作和专业研究中的关键环节。随着人工智能技术的飞速发展,大语言模型(LLM)在信息处理和自然语言理解方面展现出了巨大的潜力。Ollama Deep Researcher 应运而生,它是一款结合了 LangChain 和 Ollama 框架优势的本地化 AI 研究助手,旨在通过自动化的方式帮助用户进行深度网络调研和报告撰写,为研究人员和专业人士提供了一种高效、安全且灵活的研究工具。

二、项目概述

在传统的研究过程中,研究人员需要花费大量时间和精力在信息搜集、整理以及报告撰写上。这一过程往往繁琐且效率低下,尤其是在面对海量的网络信息时,如何快速准确地获取有价值的内容成为了一大挑战。Ollama Deep Researcher 的开发正是为了应对这一挑战,利用人工智能技术优化研究流程,提高研究效率。
在这里插入图片描述

Ollama Deep Researcher 基于 LangChain 和 Ollama 两大框架构建。LangChain 是一个用于开发语言模型应用的框架,提供了丰富的工具和模块,方便开发者构建复杂的语言模型应用。Ollama 则是一个用于运行和管理本地大语言模型的平台,使得用户能够在本地环境中轻松部署和使用多种先进的语言模型。通过结合这两个框架的优势,Ollama Deep Researcher 实现了强大的功能。

三、主要功能

(一)本地化运行与数据隐私保障

在当今数据安全意识日益增强的环境下,Ollama Deep Researcher 的本地化运行特性显得尤为重要。与许多依赖云端服务的 AI 工具不同,它完全在用户的本地设备上运行,所有数据处理和模型运算都在本地完成。这意味着用户的研究数据和搜索内容不会上传到互联网,从而有效避免了数据泄露的风险,特别适合处理敏感信息和保密项目。

(二)自动迭代搜索机制

Ollama Deep Researcher 的核心功能之一是其自动迭代搜索机制。这一机制模仿了人类研究人员在面对复杂问题时的思考和探索过程。当用户给出一个研究主题后,工具会首先利用本地 LLM 生成初步的搜索查询,然后通过配置的搜索引擎获取相关网页结果。在获取第一批结果后,LLM 会对这些结果进行总结和分析,识别出知识缺口和需要进一步探索的领域,进而生成新的、更具针对性的搜索查询。这一过程会重复进行,最多可进行 3 次迭代,逐步深入挖掘信息,直至达到用户定义的搜索深度和广度要求。

(三)研究报告生成功能

经过多轮迭代搜索和信息总结后,Ollama Deep Researcher 能够将收集到的所有有价值的信息整合成一份结构清晰、内容详实的 Markdown 格式研究报告。报告不仅包含了对研究主题的全面分析和总结,还附上了所有引用的来源,方便用户进一步查阅和验证。这种自动化的报告生成功能大大节省了研究人员在撰写报告时的时间和精力,提高了工作效率。

(四)灵活的配置选项

为了满足不同用户的需求和适应各种研究场景,Ollama Deep Researcher 提供了灵活的配置选项。用户可以根据自己的研究习惯和项目需求,选择不同的搜索引擎,如 DuckDuckGo、Tavily、Perplexity 等,以及不同的本地 LLM,如 DeepSeek-R1、Llama2 等。这种灵活性使得工具能够更好地适应不同的研究领域和信息来源,提高搜索结果的准确性和相关性。

四、技术原理

(一)搜索查询生成

当用户输入研究主题后,Ollama Deep Researcher 会调用本地 LLM 来生成初始的搜索查询。LLM 会根据对主题的理解,结合其训练过程中学到的知识和语言模式,生成多个可能的搜索关键词和短语组合。这些查询旨在尽可能广泛地覆盖与主题相关的领域,为后续的信息收集奠定基础。

(二)信息收集与处理

生成搜索查询后,工具会通过配置的搜索引擎发送请求,获取相关的网页结果。搜索引擎返回的网页内容通常包含大量文本信息,这些信息需要经过进一步处理才能被有效利用。Ollama Deep Researcher 会对网页内容进行提取和清洗,去除无关的标签、广告等内容,保留纯文本形式的有用信息。

(三)总结与知识缺口识别

处理后的文本信息会被送入本地 LLM 进行总结。LLM 会运用其自然语言处理能力,对大量文本进行语义分析和信息提炼,生成简洁明了的总结内容。同时,LLM 还会反思总结结果,识别出其中存在的知识缺口,即尚未充分解答或涵盖的研究主题相关方面。这一过程类似于人类在阅读和思考时发现新问题的过程。

(四)迭代优化过程

基于识别出的知识缺口,Ollama Deep Researcher 会生成新的搜索查询,进入下一轮的搜索和信息处理循环。每一次迭代都旨在填补上一轮的不足,逐步深入挖掘研究主题的相关信息。在迭代过程中,LLM 会不断学习和调整,优化搜索策略和总结方式,使得每次迭代的结果都比上一次更全面、更准确。

(五)报告生成与引用管理

经过多轮迭代后,收集到的所有信息会被整合到一份研究报告中。报告的生成过程遵循一定的格式和结构规范,确保内容条理清晰、易于阅读。同时,Ollama Deep Researcher 会记录下所有引用的网页来源,在报告中以适当的格式列出,保证研究的严谨性和可追溯性。

五、应用场景

(一)学术研究领域

在学术研究中,Ollama Deep Researcher 可以成为研究人员的得力助手。无论是进行文献综述、探索新的研究方向,还是收集实验数据和案例,它都能够快速提供大量相关的信息,并帮助研究人员整理和总结这些信息,为论文撰写和项目推进提供有力支持。例如,一位从事人工智能研究的学者,可以使用该工具快速了解某一特定算法在不同领域的应用现状和最新研究成果。

(二)市场分析与商业调研

对于企业来说,市场分析和商业调研是制定战略和决策的重要依据。Ollama Deep Researcher 能够帮助市场分析师快速收集市场趋势、竞争对手信息、消费者需求等方面的数据,并生成详细的分析报告。这有助于企业在激烈的市场竞争中及时把握机遇,做出科学合理的决策。

(三)技术调研与开发

在技术领域,了解最新的技术动态和发展趋势对于技术团队至关重要。Ollama Deep Researcher 可以协助技术团队成员快速搜集和整理某一技术领域的前沿知识、开源项目、技术解决方案等信息,为技术选型、项目开发和技术创新提供参考依据。

六、快速使用

(一)安装 Ollama

根据您的操作系统,从 Ollama 官网 下载并安装适合您设备的 Ollama 应用程序。

  • MacOS:https://ollama.com/download/Ollama-darwin.zip
  • Linux:curl -fsSL https://ollama.com/install.sh | sh
  • Windows:https://ollama.com/download/OllamaSetup.exe
    在这里插入图片描述

(二)拉取模型

使用以下命令拉取一个本地大语言模型(LLM),例如 DeepSeek-R1:

ollama pull deepseek-r1:8b

(三)克隆项目仓库

通过 Git 命令克隆 Ollama Deep Researcher 的 GitHub 仓库到本地:

git clone https://github.com/langchain-ai/ollama-deep-researcher.git
cd ollama-deep-researcher

(四)配置环境变量

根据您的需求,配置以下环境变量:

  • OLLAMA_BASE_URL:Ollama 服务的端点,默认为 http://localhost:11434
  • OLLAMA_MODEL:使用的模型,默认为 llama3.2
  • SEARCH_API:使用的搜索引擎,可选值为 duckduckgo(默认)、tavilyperplexity。如果使用 tavilyperplexity,需要设置对应的 API 密钥。
  • TAVILY_API_KEY:如果使用 Tavily 搜索引擎,需要设置此 API 密钥。
  • PERPLEXITY_API_KEY:如果使用 Perplexity 搜索引擎,需要设置此 API 密钥。
  • MAX_WEB_RESEARCH_LOOPS:最大研究循环次数,默认为 3
  • FETCH_FULL_PAGE:如果使用 duckduckgo 搜索 API,设置为 true 可获取完整页面内容,默认为 false

例如,使用 DuckDuckGo 搜索引擎并设置最大循环次数为 3 的配置命令如下:

export SEARCH_API=duckduckgo
export MAX_WEB_RESEARCH_LOOPS=3

(五)创建虚拟环境(推荐)

创建并激活虚拟环境:

python -m venv .venv
source .venv/bin/activate  # Linux/Mac
.venv\Scripts\Activate.ps1  # Windows

(六)安装依赖并启动 LangGraph 服务器

安装依赖并启动 LangGraph 服务器:

# 安装 uv 包管理器(仅在 Linux/Mac 下需要)
curl -LsSf https://astral.sh/uv/install.sh | sh

# 安装依赖
pip install -r requirements.txt

# 启动 LangGraph 服务器
uvx --refresh --from "langgraph-cli[inmem]" --with-editable . --python 3.11 langgraph dev

(七)使用 LangGraph Studio UI

启动 LangGraph 服务器后,浏览器将自动打开 LangGraph Studio UI 页面。您可以通过以下步骤进行配置:

  1. 配置 选项卡中,选择您希望使用的搜索引擎(默认为 DuckDuckGo)。
  2. 设置您希望使用的本地 LLM 模型(默认为 llama3.2)。
  3. 设置研究迭代深度(默认为 3)。

输入研究主题后,即可开始研究过程,并通过可视化界面查看研究进度。

七、结语

Ollama Deep Researcher 作为一款功能强大的本地化 AI 研究助手,凭借其自动迭代搜索、本地化运行保障数据隐私、灵活的配置选项以及自动生成研究报告等优势,在科研、商业和技术等多个领域展现出了巨大的应用潜力。它不仅能够帮助用户节省大量时间和精力,提高研究效率,还能为用户带来更深入、更全面的研究成果。随着人工智能技术的不断发展和模型性能的进一步提升,相信 Ollama Deep Researcher 将在未来的科研和信息处理领域发挥更加重要的作用,为人类的知识探索和创新提供更强大的助力。

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

在这里插入图片描述

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值