分享五个开源 MCP 服务器,解锁AI代理的无限潜能

近期在探索AI应用时,我发现诸如Claude等模型若仅局限于问答交互,其潜力远未充分发挥。要让AI真正执行实际任务——例如抓取网页数据或操作代码仓库——需要借助MCP(Model Context Protocol)服务器。这种协议能让AI突破封闭环境,与外部工具和服务交互。本文将介绍五款开源MCP服务器,它们已通过实际测试验证,可显著增强AI的实用价值。。

一、什么是MPC服务器?

MCP 服务器即模型上下文协议服务器,它基于 MCP 协议,在 AI 模型与外部工具、系统间起桥梁作用,通过标准化交互方式,提供资源访问、工具调用和工作流组合等功能,在开发、生活、商业等多领域应用广泛。

在使用 MCP 服务器的情况下,我们只需对 Claude 说:“Claude,查看我 GitHub 上的问题。”Claude 就能轻松实现这一操作。首次完成时,感觉挺震撼,接下来,我就将五款搜罗到的MCP服务器分享给大家

二、分享几款MCP服务器

Stagehand服务器

Stagehand 是 Browserbase 开发的一款很棒的工具。它能让你的 AI 模拟打开浏览器的操作,比如点击链接、提取文本等。我在做一个项目时,用它从一个美食博客上抓取了很多食谱标题,这可比我自己写脚本轻松多了。

    安装和启动方法:
git clone https://github.com/browserbase/stagehand-mcp
cd stagehand-mcp
npm install
npm start

在本地 3000 端口运行。给 Claude 下指令 “访问新闻网站,获取头条新闻”,Stagehand 很快抓取到标题,Claude 即可反馈。查询价格、提取数据时较为方便,无需写代码。

Jupyter MCP 服务器
    Jupyter MCP服务器可让AI在Jupyter Notebook(专业数据处理工具)中运行。作为技术爱好者,让 Claude 查看咖啡店消费记录的 CSV 文件,然后让它给我分析。

    安装和启动方法:
git clone https://github.com/jjsantos01/jupyter-notebook-mcp
cd jupyter-notebook-mcp
pip install -r requirements.txt
python server.py

本地主机的 8000 端口上运行,提示Claude:

Open coffee.csv and tell me how much I spent on lattes.

Claude 创建了一个文档,运行了一些 Python 代码,提示:

You dropped 87.50 on lattes this month. Ouch.
OPik服务器

Opik 来自 Comet公司,主要用于监控 AI 运行情况。比如说,如果 AI 的运行开始出现异常,Opik 能解释其中的原因。我之前有个 AI 机器人老给错误答案, 根据Opik提示,原来它在调用某些 API 时达到了使用限制。

    安装和启动方法:
git clone https://github.com/comet-ml/opik
cd opik
./opik.sh
    然后我把它添加到了一些代码中:
import opik

opik.configure(use_local=True)

@opik.track
def ask_something(question):
    return "You asked: " + question

ask_something("What’s for dinner?")I asked Claude to check the logs:

Show me what my AI’s been up to.

它向我展示了每一次调用API,耗费时常等因信息

GitHub-MCP

由GitHub官方提供的MCP服务器,支持通过自然语言指令直接与代码仓库交互。其核心功能包括:

  • 仓库状态实时查询:无需手动浏览多个页面,快速获取Issue、PR等关键信息

  • 智能摘要生成:自动归纳代码变更内容及协作进展

部署流程:

git clone https://github.com/github/github-mcp-server
cd github-mcp-server
npm install
export GITHUB_TOKEN=你的个人访问令牌
npm start

服务启动后(默认端口4000),通过AI代理(如Claude)发送指令:

查看仓库'side-hustle'的未解决问题

系统将返回结构化响应:

当前存在2个未解决问题:
1. [BUG] 登录模块出现身份验证异常(标签:高优先级)
2. [功能请求] 需要新增分享按钮(标签:用户体验优化)

该工具可节省约70%的仓库管理时间,尤其适用于多项目并行开发场景,有效规避信息过载风险。

FastAPI-MCP服务器

FastAPI-MCP提供了一种创新的FastAPI服务集成方式,使AI能够直接调用自定义API接口。通过该方案,开发者可将现有业务系统(如待办事项管理、订单查询等)快速转化为AI可操作的工具。以下为完整实现流程:


核心功能
  • 零代码接口暴露:通过装饰器标记API端点,自动生成AI可识别的工具描述

  • 动态服务发现:支持热加载,实时同步API变更至AI代理

  • 类型安全校验:基于FastAPI的类型注解,确保输入输出合规性

部署与集成
  1. 环境初始化
git clone https://github.com/jlowin/fastmcp
cd fastmcp
pip install fastapi-mcp  # 注意此处无换行
    **2.服务端改造**  
    在FastAPI应用中添加MCP适配层:
from fastapi import FastAPI
from fastmcp import mcp  # 导入MCP扩展模块

app = FastAPI()

# 定义原生API端点
@app.get("/todo/{item_id}")
async def get_todo(item_id: int) -> dict:
    """获取待办事项详情"""
    return {"id": item_id, "task": f"Task {item_id}"}

# 通过装饰器声明AI可访问工具
@mcp.tool()
async def get_todo_tool(item_id: int) -> dict:
    """查询指定ID的待办任务"""
    return await get_todo(item_id)
3. 服务启动
uvicorn main:app --reload  # 热加载模式运行于localhost:8000
4. 交互示例
    向AI代理(如Claude)发送指令:  
查询待办列表中第5项任务内容
    系统返回结构化数据:
{
  "id": 5,
  "task": "Call mom."
}

三、总结

    使用这些服务器的过程中我收获了很多乐趣:Stagehand 很适合处理网页相关的工作,Jupyter 在数据处理方面堪称一绝,Opik 能让一切运行透明可靠,GitHub 是程序员的梦想工具,而 FastAPI-MCP 则让我可以随心所欲地构建任何东西。它们全部免费,而且如果你想玩点高级的,还可以对它们进行自定义调整。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

微信扫描下方二维码获取哦!
在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

<think>好的,我现在需要回答用户关于MCP服务器的介绍和部署教程的问题。首先,我需要回顾用户提供的引用内容,确保信息准确且符合要求。 根据引用[2],MCP服务器是轻量级服务,连接数据源或工具,如数据库、文件系统、第三方API等。每个服务器专注于特定资源或功能,使用JSON-RPC或gRPC协议。这解释了MCP服务器的基本架构和作用。 引用[3]提到MCP服务器如何与Istio集成,将第三方注册表的服务转换为ServiceEntry和WorkloadEntry资源,通过MCP协议提供给Pilot。这说明MCP服务器在服务网格中的应用场景,特别是在Istio中的角色。 引用[4]给出了一个具体例子,用户需要编写MCP服务器集成SCP命令,实现文件上传功能。这展示了如何实际部署和配置MCP服务器,结合特定工具完成自动化任务。 接下来,整理MCP服务器的核心功能:协议转换、资源连接、标准化接口。部署步骤需要包括环境准备、编写服务器逻辑、协议配置、服务注册和启动测试。同时,需要结合用户提供的例子,比如SCP文件上传,来说明具体实现。 要注意用户可能的需求,比如如何开始搭建、如何集成现有工具,以及可能的优化方法。需要确保步骤清晰,引用正确,并生成相关问题帮助用户深入理解。</think>### MCP 服务器介绍 MCP(Managed Configuration Protocol)服务器是一种轻量级中间服务,主要用于连接客户端工具与外部资源(如数据库、API、文件系统等),其核心功能是通过标准化协议实现资源交互和自动化操作[^2]。以下是其关键特性: 1. **协议转换** 将不同数据源的通信协议统一为JSON-RPC或gRPC等标准格式,例如将本地文件操作转换为SCP协议传输[^4]; 2. **资源连接** 每个MCP服务器专注于特定资源类型(如示例中的SCP文件传输服务),通过模块化设计支持快速扩展; 3. **标准化接口** 提供声明式API接口,例如通过关键词“上传微信目录”触发自动化流程[^4]。 ### MCP 服务器部署教程(以文件传输为例) #### 步骤1:环境准备 安装必要依赖(Python示例): ```bash pip install json-rpc scp ``` 这会包含基础通信协议库和SCP客户端工具[^1]。 #### 步骤2:编写服务器逻辑 ```python from jsonrpcserver import method, serve import paramiko @method def upload_wechat_dir(): transport = paramiko.Transport(("47.93.xx.xx", 22)) transport.connect(username="root", password="") sftp = paramiko.SFTPClient.from_transport(transport) sftp.put_r("/Users/syw/project/wechatAr", "/opt/ll") return {"status": "success"} ``` 此代码实现了通过SFTP协议上传文件夹的RPC方法[^4]。 #### 步骤3:配置协议层 创建协议配置文件`mcp_config.yaml`: ```yaml protocol: json-rpc endpoints: - name: file_transfer trigger_keyword: "上传微信目录" method: upload_wechat_dir resource_type: scp ``` #### 步骤4:服务注册与启动 ```bash python3 -m jsonrpcserver serve mcp_config.yaml --port 8080 ``` 此时服务器将监听8080端口等待MCP主机的连接请求。 #### 步骤5:客户端测试 通过curl验证服务: ```bash curl -X POST http://localhost:8080 -d '{"jsonrpc":"2.0","method":"upload_wechat_dir","id":1}' ``` ### 典型应用场景 1. **服务网格集成** 将第三方注册中心的服务信息转换为Istio可识别的ServiceEntry资源[^3]; 2. **自动化运维** 通过关键词触发服务器维护任务(如日志清理、备份等); 3. **跨平台数据同步** 实现不同云平台间的文件自动同步。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值