如果你关注AI、关注Agent,那么你一定要关注MCP,一定好好理解它,一定要多用它。
AI的发展有两条非常明确的路线,我之前在社群里说过:一是掌握更多信息,二是控制更多工具。
两年前的大模型,它的信息来源只有训练时的数据,以及推理时我们告诉它的东西。
后来,我们给它加上联网搜索,让它能获得更广阔、更及时的信息;我们给它加上RAG技术、加上知识库,让它能获得垂直领域那些不外传的信息。
这些还不够,因为都是文字信息。于是我们又上了多模态,现在连图片它都能理解了。
你看,所有这些发展都符合第一条路线——掌握更多信息。
光有信息还不够,要改变世界,你手里还得有工具。这个就是第二条路线。我认为,MCP是第二条路线的关键。
有了MCP,你手里的AI就从功能机进化到智能机。
老规矩,我先演示,再解释。
屏幕左边是Obsidian,一个笔记应用。为了演示,我新建了一个库,放了三篇之前的视频脚本作为笔记。
屏幕右边是Cline。它是一个AI插件,编程能力非常强。如果你的主力是VS Code,那一定要用它。
那么,我想给大家看的是,通过Obsidian MCP——你可以简单理解为就是一个接口,像Cline这类AI工具可以直接读取和修改Obsidian里的笔记。
咱们先从最简单的开始。我问Cline:库里都有哪些笔记?
接到请求后,Cline看了一圈环境,发现Obsidian跟一个MCP服务器连在一起。于是,它决定通过MCP服务器,调用list notes这个工具,去查询都有哪些笔记。
在RESPONSE里边,MCP服务器把查询到的信息返回给了Cline,然后它给出最终答案。
跟查询库里都有哪些笔记一样的原理,Cline还可以通过MCP服务器读取笔记的具体内容。
我问它,这篇笔记的主要内容是什么?
这时,Cline会使用read note工具去读取笔记。把一千多字的内容全部提取之后,它对内容进行总结,然后给出最终答案。
大家如果有印象的话,应该记得我之前出过两期视频,都是关于Cursor对Obsidian笔记的修改。这个做法的前提是,Cursor打开了Obsidian存放在本地的笔记仓库。
但是,并不是所有AI工具都有这样的条件和能力去调用整个笔记仓库。这时候就需要MCP服务器,它作为一个通用接口连接两端。
我刚才演示的,只连接了一个MCP服务器。其实,为了完成一项任务,AI可以连接多个MCP服务器,调用多个工具。我再演示一个例子。
这是OpenAI官网的文章,关于GPT-4.5。我把链接给到Cline,希望它能把文章的内容给扒下来。
这时,Cline发现,还有Tavily MCP可以连接。Tavily是一个专门为大模型优化过的搜索引擎。它的MCP里边有一个提取网页内容的工具。
使用这个工具,Cline顺利把网页内容给扒了下来。然后,它重新整理和总结所有信息,最终给出很清晰的回答。
接着,我给出第二条指令:把这份Summary作为新笔记,存进Obsidian里边。
你看,它调用Obsidian MCP里的create note工具,开始创建笔记。中间遇到了一个格式上的问题,主要是特殊字符导致解析错误。我猜是中文标点的问题。好在Cline很聪明,在第二次尝试的时候,主动规避了特殊字符,最后完成了笔记创建。
通过刚才的演示可以看到,像Cline、Claude之类的AI应用,能够调用各种工具,完成更进阶的任务。这个就是MCP的价值。
这么说吧:MCP就是AI的USB-C接口。
在MCP出来之前,AI都是怎么调用工具的?通过API接口对吧?但是,API有很大的局限性,不适合AI。
第一,不同工具的API都有各自的规范。
举个例子。如果要调用一个天气预报工具,我就得按它的格式要求告诉它城市名称和日期,比如单词“Beijing”、“0315”(也就是3月15日)。如果要调用一个计算器工具,我就得按它的格式要求告诉它数值和符号,比如“1”、“+”、“2”。
市面上有海量的工具。AI要知道、要去满足每一个工具的要求,这是不现实的。这就好比有的设备是USB-A接口,有的设备是micro USB,有的设备是mini USB。作为用户,看到这一堆接口,头都大了好吗!
所以,AI需要一套统一的规范,去统一所有的工具接口。就好比今天的USB-C,手机也好、电脑也好,全都用这个接口。而且,现在新的显示器还支持用USB-C接MacBook,既能充电,还能传输信号,连HDMI都省了。一根线走天下是大势所趋。
第二,API关注的是数据的传输,而非数据的含义。
就像刚才的例子,我如果问:下周一北京天气怎么样?或者,一加二等于几?像这样的数据,API没法接受,因为它不理解、也不需要理解这是什么意思。它的职责就是把数据拿过来、传过去。
但是MCP能搞定。它会把一切都打包好,给到大模型去理解。MCP把用户的查询、工具的描述和参数,以结构化的方式传递给大模型,由大模型决定如何处理。
目前市面上对MCP支持最好的工具,一个是Claude桌面版——毕竟MCP就是他们家提出的,另一个是Cline。
我刚才演示里的两个MCP,Tavily那个是现成的,可以在Cline Marketplace里搜到。然后Cline会下载代码仓库,并且自动部署,非常方便。
而Obsidian那个,是我让Cline自动生成。过程中我没写一行代码,就是一路点“同意”,几分钟就搞定了。如果需要增加或者修改某个工具,也可以交给Cline去完成。
MCP本身并不复杂。在AI编程工具的帮助下,你也可以开发自己的MCP工具,然后部署在本地或者云端,比如Cloudflare。最核心的index文档,你完全可以在AI的帮助下理解清楚。
或者,你就用现成的。市面上已经出现好多个MCP导航网站,比如Smithery。
在商业化方面,我看到市场上也出现了第一款收费的MCP,可以帮忙设计UI。
MCP的价值得到越来越多人的认可。一切都在快速推进中。就像前边说的,如果AI只能调用有限的、预先设置好的工具的话,那不就是以前的功能机吗?通过MCP,AI可以自由接入海量工具。从这一刻开始,AI才从功能机时代迈入智能机时代。
如何学习AI大模型?
大模型的发展是当前人工智能时代科技进步的必然趋势,我们只有主动拥抱这种变化,紧跟数字化、智能化潮流,才能确保我们在激烈的竞争中立于不败之地。
那么,我们应该如何学习AI大模型?
对于零基础或者是自学者来说,学习AI大模型确实可能会感到无从下手,这时候一份完整的、系统的大模型学习路线图显得尤为重要。
它可以极大地帮助你规划学习过程、明确学习目标和步骤,从而更高效地掌握所需的知识和技能。
这里就给大家免费分享一份 2025最新版全套大模型学习路线图,路线图包括了四个等级,带大家快速高效的从基础到高级!
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取