DeepSeek+ragflow打造企业知识库!真香警告

读者福利:关注公众号【大模型应用开发LLM】可获取入门大模型学习资料包一份~

fastgpt的知识库,是我认为目前最简单好用的知识库了,我一直用了很久。不过评论区多次提到另外一位热门选手:ragflow

图片

图片

图片

图片

ragflow其实我去年也用过,但是并没有深入一直去使用,因为当时我用着老是有各种各样的问题,比如上传的文件老是解析失败,用着用着突然访问不了了,问答拆分等解析模式非常慢等等。最关键的是当时因为搞各种本地大模型,本地部署,资源不够用了,,,而ragflow又非常吃资源

图片

内存需求是fastgpt和dify的4倍;CPU是fastgpt和dify的2倍;而我的本地电脑内存就只有16G,属于是刚好能用。这两天为了在开各种软件的同时还能流畅运行ragflow,我斥巨资给电脑加装了两条16G内存条(共32G)

图片

加装之后果然流畅多了~

图片

这期给大家分享一下这几天ragflow的使用感受,和适用场景。

内容主要有:

1.简单介绍本地部署流程;

2.知识库搭建,参数配置讲解;

3.ragflow的团队管理、权限控制;

图片

一、ragflow本地部署

图片

ragflow在github上面也是一个明星项目了,有高达42.8k的Star,得到大家的高度认可。

图片

图片

**Github地址:**https://github.com/infiniflow/ragflow.git

图片

图片

图片

在这里直接下载源码包

图片

无法访问GitHub的朋友,可以公众号后台私信:“ragflow” 获取最新源码包。

源码包解压之后,到如下路径 ragflow/docker

图片

路径上输入cmd,回车,进入控制台,输入如下指令一键启动。

docker compose -f docker-compose.yml up -d

ragflow的镜像比较大,最大的有10G。最好开着魔法,会比较快,实在没有魔法的朋友可以参考这篇,配置国内镜像加速地址。

内有镜像加速地址配置方法

袋鼠帝,公众号:袋鼠帝AI客栈DeepSeek+dify v1.0.0,本地构建企业级AI应用平台,真的太香了~

部署完毕之后,查看容器状态,如果都是running状态,就代表启动成功。

图片

访问本机 http://127.0.0.1,即可进入ragflow的操作界面。

图片

图片

二、ragflow知识库搭建

图片

点击右上角头像->模型提供商

为了方便,咱还是配置使用硅基流动(因为里面有免费模型,模型全面,包含了知识库所需的索引模型、聊天模型、重排模型等等),还有DeepSeek V3 和 DeepSeek R1满血版,性价比高,最适合用来调式了。

图片

当然如果想要使用中转站,也可以选择OpenAI-API-Compatible进行配置

PS:推荐一个中转站 https://kg-api.cloud/

图片

右上角系统模型设置这里,就可以配置聊天、嵌入、重排模型

图片

知识库->创建知识库,进入如下页面,进行知识库参数配置

PS:知识库有两套参数,一套是文件解析,进入知识库所需的参数配置,另一套是用户提问,进行知识库检索的参数配置

图片

上图就是进行文件入库所需的配置,文档语言选择中文,文档解析器,可选自带的DeepDoc,还可以选择一些带有视觉功能的大模型(推荐配置都豆包的pro模型,豆包的视觉识别效果亲测很不错)

嵌入模型选择硅基流动的BAAI/bge-m3即可。之前文章的知识库搭建案例里面都是用的txt文件,后续有好些朋友问我多字段的Excel表格文件怎么处理呢

图片

所以,今天我们就讲另外两个常见案例用Excel文件、和pdf文件搭建知识库。

pdf知识库

不过我们先看pdf文件,这里我在小米官网下载了一份小米 su7 ultra的参数配置pdf

图片

ragflow的解析方法有11种,每种选中之后,在右边都会展示其适用的文件、数据类型,根据需求进行灵活选择最适配的解析方法。

图片

模型方面,我图方便就都选择硅基流动的模型了,解析方法采用了简单的分块方法。因为su7 ultra的参数配置pdf里面主要就是一些车辆参数,简单分块即可,不存在上下文丢失等问题

图片

数据集->上传文件,直接上传

图片

上传成功之后ragflow不是自动解析的,需要手动解析可以全选之后批量解析,或者选择单个文件进行解析

图片

3分钟内解析完毕,查看详情,分了10个块,看效果感觉解析的还不错。

图片

聊天->新建助理->可以创建一个bot来关联su7 ultra参数知识库

图片

图片

模型设置这边可以指定模型,以及模型的参数,由于是需要检索回答su7 ultra的车辆参数,是个很严谨的场景,所以模型设置**“精确”**。

图片

在下图,可以自定义系统提示词,不过ragflow会给个默认的。

**相似度阈值:**只有相似度分数高于这个阈值的文本块才会被保留;

关键字相似度权重:当设置为 0.7 时,关键词相似度的影响占 70%,剩余的 0.3(30%)则分配给向量相似度或重排序分数;

top N:大模型最终只能接收到前N个块的信息。

图片

设置完成之后点击确定即可。接下来就开始测试啦~

效果如下图,说实话,随便测试了一些问题,回答是相当准确,当没有在知识库中找到答案时,也不会胡乱回答,非常精准。

特别是最后一段总结,我感觉确实把这辆车的亮点总结得非常到位!

图片

图片

图片

图片

图片

最后一段总结,说得我都想买了 哈哈哈

但就是每句话都会说根据知识库内容xxxx然后回答的非常简短,以及机器味儿浓厚。

不过这肯定是系统提示词的问题,调一下会改善很多(不是今天的重点)。

说实话,ragflow的知识库效果确实惊艳,而且这还是在我没有调整任何参数的情况下,有点太恐怖了!

Excel知识库

测试了pdf,我们接下来试试用Excel看看效果。Excel的知识库配置,只需要特别把解析方法换成Table即可(别忘了点保存)。

图片

我准备了一个表格,对应淘宝上 搜索“内存条”的前三页商品信息

图片

表格原始内容,格式如下

图片

上传之后,解析

图片

挺快的,20秒内解析完毕,解析效果如下(按照一行一个块)表格中每列的列标题非常重要,一定要准确的描述清楚每一列所代表的含义!

图片

然后,还是跟刚才一样,创建一个对话bot,将Excel知识库与之关联,就不重复赘述了。测试效果如下:

图片

测试之后,我发现Table格式的知识库,需要更强大、智能的模型来支撑,比如DeepSeek R1、Claude3.7等。

因为表格的数据维度太多了,实测用DeepSeek V3效果不佳,无法智能的推荐商品。

并且相似度阈值和关键字相似度权重需要设置低一些(低于0.5),这样能拿到尽可能多的数据,给大模型判断。

图片

三、ragflow的权限管理

图片

我发现ragflow的权限管理很简单点击右上角头像->团队->邀请,要求填写被邀请对象的邮箱

图片

这里需要填写已经在ragflow注册的邮箱账号。

点击确定后,被邀请人需要在团队页面点击同意,才会加入你的团队空间。

但是你作为团队管理员,并不能设置团队成员角色,默认只有一个normal角色。。。

图片

而团队成员是无法看到管理员创建的bot,agent。

管理员也无法看到成员创建的bot、agent。

只有知识库能设置私有、或者团队。

图片

如果设置为团队,那么团队所有成员都能共用这个知识库。

链图片转存中…(img-9iejRNdl-1746157447353)]

这里需要填写已经在ragflow注册的邮箱账号。

点击确定后,被邀请人需要在团队页面点击同意,才会加入你的团队空间。

但是你作为团队管理员,并不能设置团队成员角色,默认只有一个normal角色。。。

[外链图片转存中…(img-7RO2Afd0-1746157447353)]

而团队成员是无法看到管理员创建的bot,agent。

管理员也无法看到成员创建的bot、agent。

只有知识库能设置私有、或者团队。

[外链图片转存中…(img-kACD3SxQ-1746157447353)]

如果设置为团队,那么团队所有成员都能共用这个知识库。

总结一下, ragflow的权限控制并不细,无法控制单个bot、或者agent的权限。bot、agent是完全隔离的,只有知识库可控制私有或者共享。

如何学习AI大模型?

大模型的发展是当前人工智能时代科技进步的必然趋势,我们只有主动拥抱这种变化,紧跟数字化、智能化潮流,才能确保我们在激烈的竞争中立于不败之地。

那么,我们应该如何学习AI大模型?

对于零基础或者是自学者来说,学习AI大模型确实可能会感到无从下手,这时候一份完整的、系统的大模型学习路线图显得尤为重要。

它可以极大地帮助你规划学习过程、明确学习目标和步骤,从而更高效地掌握所需的知识和技能。

这里就给大家免费分享一份 2025最新版全套大模型学习路线图,路线图包括了四个等级,带大家快速高效的从基础到高级!

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述
👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,需要的扫描下方二维码领取 **

在这里插入图片描述

### 关于 Deepseek、Ollama 和 Ragflow 的本地部署实施方案 #### Deepseek 本地部署概述 Deepseek 是一款专注于自然语言处理的知识库解决方案,支持高效的文档管理和语义搜索功能。对于希望构建私有知识管理系统的用户来说,Deepseek 提供了一套完整的工具链来帮助完成从数据采集到索引建立再到最终查询服务的一系列操作[^1]。 为了在本地环境中安装和配置 Deepseek: 1. **环境准备** - 安装 Docker 及其相关组件。 - 配置必要的网络设置以便容器间通信顺畅。 2. **拉取镜像与初始化数据库** 使用官方提供的命令下载最新版本的应用程序包,并按照指引创建初始结构化的存储空间用于保存后续导入的数据集。 3. **加载预训练模型** 根据具体应用场景选择合适的机器学习算法框架作为后台支撑力量,在此基础上加载已经过优化调整过的参数文件以加速新项目的开发周期。 4. **集成第三方API接口** 如果项目中有涉及到外部资源调用的需求,则可通过 RESTful 或 GraphQL 协议轻松对接各类公共服务平台所提供的 API 接口,从而扩展应用的功能边界。 5. **测试验证环节** 利用内置的压力测试工具模拟真实世界的并发访问情况,确保整个系统能够在高负载条件下稳定运行;同时也要注意定期备份重要资料以防意外丢失。 ```bash docker pull deepseek/latest docker run --name=deepseek-db -e POSTGRES_USER=user -e POSTGRES_PASSWORD=password -d postgres:latest ``` #### Ollama 本地部署指南 Ollama 致力于为企业提供一站式的AI驱动型知识管理系统,具备良好的可移植性和灵活性特点。通过简单的几行脚本即可快速搭建起一套基于云原生架构设计的服务集群,满足不同规模企业内部协作交流过程中所产生的多样化诉求。 针对想要自行托管实例的情况而言: - 下载适用于目标操作系统类型的二进制执行文件; - 修改默认配置项中的监听地址端口号等基本信息; - 启动主进程之前先检查依赖关系是否齐全; - 访问浏览器输入指定URL路径查看图形界面版控制面板; - 导入样例工程熟悉基本的操作流程之后再逐步引入实际生产环境里的素材内容进行加工整理。 ```jsonnet { "api": { "listen_addr": ":8080", "max_body_size_mb": 10, ... }, } ``` #### Ragflow 本地部署说明 Ragflow 特别适合那些寻求高级定制选项和技术深度的企业级客户群组,拥有出色的 RAG 引擎及工作流编排能力,可以应对更为复杂多变的任务场景要求[^2]。下面是一份简化后的部署手册摘要: ##### 准备阶段 - 确认硬件设施达标(CPU/GPU内存容量充足) - 获取授权许可密钥激活产品特性权限 - 设置 GitLab CI/CD 流水线自动化持续交付管道 ##### 执行步骤 - 构建基础镜像并推送至私有的 Harbor 私服仓库内待命 - 编写 Helm Chart 文件定义好各微服务之间的关联映射关系图谱 - 应用 YAML 清单描述符启动 K8S Pod 实例集合体形成分布式计算网格布局 - 登录 Web 控制台页面校验各项指标数值是否正常无误 ```shell helm install my-release ./ragflow-chart \ --set image.repository=my.harbor.repo/ragnaroek/ragflow-server \ --set image.tag=v1.0.0 \ -f values.yaml ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值