HDU - 5361

题意:n个点,可以在点和点之间互相跳,给出在每个点跳一次的花费,以及他可以跳到的范围,求从第一个点跳到所有点的最小花费。

很像单源最短路,但直接暴力肯定不行,因为是从第一个点开始跳,发现已经跳到的点一定是最小花费,后续不需要在考虑这个点,因此可以想办法优化掉,第一个想到的是双向链表,但发现维护起来并不合适,后来又想到直接用并查集就可以了,用并查集求每个点右边的第一个没去掉的点,也就是可以入队的点。去掉当前这个点,判断一下他左边挨着的点有没有去掉,去掉的话更新一下左边点的并查集就可以了。

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<queue> 
using namespace std;
const int maxn = 2e5 + 10;
int l[2][maxn], r[2][maxn], v[maxn], f[maxn], book[maxn], n;
struct node{
	int now;
	long long cost;
	bool operator < (node u)const{
		return cost > u.cost;
	}
};
long long ans[maxn];
int find_(int x){
	if(f[x] == x)
	return x;
	return f[x] = find_(f[x]);
}
int merge(int u, int v){
	if(u == 0)
	return 0;
	int t1 = find_(u);
	int t2 = find_(v);
	if(t1 != t2){
		f[t1] = t2;
		return 1;
	}
	return 0;
}
void delete_(int x){
	if(ans[x - 1] != -1)
	merge(x - 1, x);
	return ;
}
void solve(){                  
	for(int i = 1; i <= n; i++){
		f[i] = i, ans[i] = -1;
	}
	priority_queue<node>Q;
	node be;
	be.now = 1, be.cost = v[1], ans[1] = 0;
	Q.push(be);
	while(!Q.empty()){
		node pe = Q.top(); Q.pop();
	//	cout << endl;
	//	cout << pe.now << " " << pe.cost << endl;
		
		for(int i = 0; i < 2; i++){
			int now = l[i][pe.now];
			while(now <= r[i][pe.now]){
	//			cout << now << endl;
				if(ans[now] == -1){
					ans[now] = pe.cost;
					delete_(now);
					node be;
					be.now = now;
					be.cost = pe.cost + v[now];
					Q.push(be);
					now++;
				}
				else{
					now = find_(now) + 1;
				}
			}
		}
	
	}
	return ;
}
int main(){
	int T, u;
	cin >> T;
	while(T--){
		cin >> n;
		for(int i = 1; i <= n; i++){
			scanf("%d", &u);
			r[0][i] = max(i - u, 0);
			l[1][i] = min(i + u, n + 1);
		}
		for(int i = 1; i <= n; i++){
			scanf("%d", &u);
			l[0][i] = max(i - u, 1);
			r[1][i] = min(i + u, n);
		}
		for(int i = 1; i <= n; i++){
			scanf("%d", &v[i]);
		}
		solve();
		for(int i = 1; i <= n; i++){
			printf("%lld", ans[i]);
			if(i == n)
			cout << endl;
			else
			printf(" ");
		}
	}
	return 0;
}
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值