求逆元

4 篇文章 0 订阅

新看到的求逆元的正确姿势,先记一下慢慢消化

ll inv[maxn];
void init() {
    inv[1] = 1;
    for (int i = 2; i < maxn; i++) inv[i] = inv[mod % i] * (mod - mod / i) % mod;
}

 

然后是常用的扩展欧几里得求逆元:

long long ex_gcd(long long a, long long b, long long &x, long long &y)
{
    if (!b){ x = 1; y = 0; return a; }
    ll r = ex_gcd(b, a % b, x, y);
    ll t = x % mod;
    x = y % mod;
    y = ((t - a / b * y) % mod + mod) % mod;
    return r;
}

//求2对于1e9+7的逆元就是 ex_gcd(2, 1e9+7, x, y),其中x的值就是inv2

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
欧几里得算法是一个用于计算两个整数的最大公约数的算法,扩展欧几里得算法可以在得最大公约数的同时计算出满足贝祖等式 ax + by = gcd(a,b) 的整数解 x 和 y,其中 a 和 b 是输入的整数。 扩展欧几里得算法可用于解模反元素(逆元),其中逆元是指某个整数关于模数的乘法逆元素。 下面是我用C语言实现扩展欧几里得算法逆元的示例代码: ``` #include <stdio.h> int extended_gcd(int a, int b, int *x, int *y) { if (b == 0) { *x = 1; *y = 0; return a; } int x1, y1; int gcd = extended_gcd(b, a % b, &x1, &y1); *x = y1; *y = x1 - a / b * y1; return gcd; } int mod_inverse(int a, int m) { int x, y; int gcd = extended_gcd(a, m, &x, &y); if (gcd != 1) { printf("逆元不存在\n"); return -1; // 逆元不存在 } int inverse = (x % m + m) % m; return inverse; } int main() { int a, m; printf("请输入要逆元的整数a和模数m:"); scanf("%d %d", &a, &m); int inverse = mod_inverse(a, m); if (inverse != -1) { printf("%d关于模数%d的逆元是:%d\n", a, m, inverse); } return 0; } ``` 这是一个简单的扩展欧几里得算法逆元的实现,首先通过`extended_gcd`函数出`a`和`m`的最大公约数,并计算满足贝祖等式的整数解`x`和`y`。如果最大公约数不为1,则逆元不存在。若最大公约数为1,则通过模的方式计算`x`关于模数`m`的逆元。代码中的`mod_inverse`函数用于调用`extended_gcd`函数,并处理逆元不存在的情况。最后,通过用户输入需要逆元的整数`a`和模数`m`,并输出结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值