范数与正则化

范数

比较1、2两个数字的大小,其结果显而易见。但我们如何比较(3,6)、(4,5)两个向量的大小呢?此时就用到了范数。范数是衡量某个向量空间(或矩阵)中的每个向量的长度或大小。范数的一般化定义:对实数p>=1, 范数定义如下:

  • L1范数   

当p=1时,是L1范数,其表示某个向量中所有元素绝对值的和。

  • L2范数

当p=2时,是L2范数, 表示某个向量中所有元素平方和再开方, 也就是欧几里得距离公式。

  • 举例说明

向量(3,6)的L2范数为\sqrt{3^{2}+6^{2}}=\sqrt{45},向量(4,5)的L2范数为\sqrt{4^{2}+5^{2}}=\sqrt{41},因此向量(3,6)的L2范数大于向量(4,5)的L2范数。

正则化

机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种: ℓ1​-normℓ2​-norm( L1正则化 和 L2正则化,或者 L1范数 和 L2范数)。正则化项可以看做是损失函数的惩罚项。所谓“惩罚“是指对损失函数中的某些参数做一些限制,可以有效的防止模型过拟合。

  • L1正则化,Lasso回归

其损失函数如下所示:

                                           Loss_{L1}=Loss+\lambda \sum \left | \left | \omega \right | \right |

上式中\omega代表网络中需要训练的参数,超参数\lambda需要人为指定。我们训练的目标是损失值最小化,即min(Loss_{L1}),为了达到这个目的我们需要训练得到一组合适的\omega值,使其能够保证Loss\lambda \sum \left | \left | \omega \right | \right |两项都足够小。

需要注意的是,L1正则化使用绝对值来约束参数,导致其在0点不可微分,这种情况下参数\omega很有可能最终被约束为0。假设模型需要训练的参数空间是二维的,即只有\omega _{1}\omega _{2}两个参数,则训练过程可用下图表示:

上图中正方形代表L1正则下的参数限制空间,彩色等值线代表参数优化空间,模型优化与训练其实就是在优化空间与限制空间的参数当中,寻找最优参数值的过程。从图中可以看出,优化空间与限制空间有很大的概率相交于坐标轴上,即使扩展到更高的参数维度,L1的参数限制空间始终存在尖锐的凸点,这意味着L1正则可能会将网络中某些参数约束为0,从而导致参数的稀疏化。如果需要做模型压缩,L1正则是一个不错的选择。

  • L2正则化,Ridge回归(岭回归)

其损失函数如下所示:

                                          Loss_{L1}=Loss+\lambda \sum \left | \left | \omega \right | \right |^{2}

L2正则下的参数限制空间与参数优化空间的交点在参数0点的概率很低。因此L2正则化可以使参数尽可能的小,但不至于为0,这样既保留了模型的拟合能力,同时也增加了泛化能力,因此L2一般情况下更常用。如下图所示:

 

参考文章:https://www.jianshu.com/p/c9bb6f89cfcc

                      https://blog.csdn.net/jinping_shi/article/details/52433975

                      《深度学习之pytorch物体检测实战》

                    

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进击的路飞桑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值