力扣第257题 二叉树的所有路径 c++ 树 深度优先搜索 字符串 回溯 二叉树

本文介绍如何通过递归解决二叉树中从根到叶节点的路径问题,包括代码示例和优化策略。
摘要由CSDN通过智能技术生成

题目

257. 二叉树的所有路径

简单

给你一个二叉树的根节点 root ,按 任意顺序 ,返回所有从根节点到叶子节点的路径。

叶子节点 是指没有子节点的节点。

示例 1:

输入:root = [1,2,3,null,5]
输出:["1->2->5","1->3"]

示例 2:

输入:root = [1]
输出:["1"]

提示:

  • 树中节点的数目在范围 [1, 100] 内
  • -100 <= Node.val <= 100

思路和解题方法

        1. 首先我们需要明确这个问题的目标,即找到所有从根节点到叶节点的路径。对于每一条路径,我们需要把其中的每个节点的值按顺序连接起来形成一个字符串,并将其保存在一个字符串数组中返回。

        2. 通过观察代码,我们可以发现该题解中使用了递归的思想来解决问题。具体来说,它定义了一个名为 traversal 的递归函数,该函数需要传入三个参数:

  •  
    • node: 当前访问的节点。
    • path: 保存当前路径的节点值的数组。
    • ans: 保存所有路径的字符串的数组。

        3. 对于每个节点 node,该函数首先将 node->val 添加到 path 中,并判断 node 是否为叶节点(即 node->left==NULL&&node->right==NULL),如果是,则将 path 中的所有值按顺序连接起来形成一个字符串,并将其添加到 ans 数组中;否则,递归遍历 node 的左右子树,并在递归返回后将 path 数组中的最后一个元素弹出,以恢复到上一层递归时的状态。

        4. 最终,在主函数 binaryTreePaths 中,我们首先判断根节点是否为空,如果为空,则返回空的字符串数组;否则,我们调用 traversal 函数,将根节点、空的 path 数组和空的 ans 数组作为参数传入,以获取所有路径。最后,返回 ans 数组即可。

复杂度

        时间复杂度:

                O(n)

时间复杂度:对于每个节点,我们只需要访问一次,其中 n 是节点数。

        空间复杂度

                O(n)

递归过程中使用了一个字符串类型的参数 path 和一个字符串数组 ans,以及递归调用栈,因此空间复杂度为 O(n)。特别地,如果所有的节点都在同一条路径上,递归栈的最大深度将是 n,在这种情况下,空间复杂度将达到 O(n) 的最坏情况。

c++ 代码

class Solution {
public:
    // 辅助函数,用于递归遍历二叉树并找到所有路径
    void traversal(TreeNode* node, vector<int>& path, vector<string>& ans) {
        // 将当前节点的值添加到路径中
        path.push_back(node->val);

        // 如果当前节点是叶节点,则将路径转化为字符串,并添加到结果数组中
        if (node->left == nullptr && node->right == nullptr) {
            string sPath;  // 储存当前路径的字符串形式
            for (int i = 0; i < path.size() - 1; i++) {
                sPath += to_string(path[i]);  // 将路径节点的值转化为字符串并添加到路径字符串中
                sPath += "->";  // 添加箭头符号分隔路径节点
            }
            sPath += to_string(path[path.size() - 1]);  // 添加最后一个节点的值
            ans.push_back(sPath);  // 将路径字符串添加到结果数组中
            return;
        }

        // 递归遍历左子树
        if (node->left) {
            traversal(node->left, path, ans);
            path.pop_back();  // 返回上一层递归之前,弹出当前节点,恢复路径状态
        }

        // 递归遍历右子树
        if (node->right) {
            traversal(node->right, path, ans);
            path.pop_back();  // 返回上一层递归之前,弹出当前节点,恢复路径状态
        }
    }

    vector<string> binaryTreePaths(TreeNode* root) {
        vector<int> path;  // 用于保存当前路径节点的值的数组
        vector<string> ans;  // 用于保存所有路径字符串的数组

        if (root == nullptr) return ans;  // 特殊情况处理,空树直接返回空结果数组

        traversal(root, path, ans);  // 递归遍历二叉树,找到所有路径

        return ans;  // 返回结果数组
    }
};

c++优化代码 (精简)

class Solution {
public:
    // 辅助函数,用于递归遍历二叉树并找到所有路径
    void traversal(TreeNode* node, string path, vector<string>& ans) {
        // 如果节点为空,直接返回
        if (node == nullptr) return;

        // 将当前节点的值添加到路径中
        path += to_string(node->val);

        // 如果当前节点是叶节点,则将完整路径添加到结果数组中
        if (node->left == nullptr && node->right == nullptr) {
            ans.push_back(path);
            return;
        }

        // 添加箭头符号分隔路径节点
        path += "->";

        // 递归遍历左子树
        traversal(node->left, path, ans);

        // 递归遍历右子树
        traversal(node->right, path, ans);
    }

    vector<string> binaryTreePaths(TreeNode* root) {
        vector<string> ans;  // 用于保存所有路径的数组
        traversal(root, "", ans);  // 递归遍历二叉树,找到所有路径
        return ans;  // 返回结果数组
    }
};

traversal 函数进行了修改。我们使用一个额外的 string 类型的参数 path 来保存当前路径的字符串

而不是使用一个整数数组。在递归过程中,我们将当前节点的值加入到 path 结尾,并根据情况添加箭头符号 "->"

此外,我们还对参数进行了一些调整,使用 nullptr 表示空指针,而不是 NULL。这是 C++11 引入的 nullptr 关键字,它更为直观和安全。

觉得有用的话可以点点赞,支持一下。

如果愿意的话关注一下。会对你有更多的帮助。

每天都会不定时更新哦  >人<  。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值