1、像素坐标与像平面坐标系之间的关系
得出这个公式后我们可以运用线性代数的知识把方程用矩阵形式表示:
当然我们也可以用另一种矩阵形式表示:
2、相机坐标系与世界坐标系之间的关系
3、成像投影关系(相机坐标系与像平面坐标系)
同样我们用矩阵形式表示:
4、得到公式
而我们可以将以上公式综合一下就可以得到:
由于公式是复制得,以下用P代替:
移项可得:
其中L为:
A为:
U为:
上面说了,在2N个点时,我们可以通过最小二乘法使结果更加精确,其结果为:
在直接线性标定方法中,并没有考虑相机镜头的非线性畸变,而在Tsai提出的两步标定法中很好的解决了这个问题。相关理论推导如下:
1、相机畸变模型
我们可以看出在上图中可以分以下几个坐标系:
① 像机坐标系Oc
② 图像像素坐标系Oi
③ 世界坐标系Ow
④ 实际图像物理坐标系Od
⑤ 理想图像物理坐标系Ou
2、畸变量
此时,畸变量可分为在X方向和Y方向上,这种畸变量我们只考虑了径向畸变,其他畸变右以忽略不计,径向畸变本身是有一定的线性关系的,下面畸变模型的讲解时也会说到:
Dx:x方向畸变量
Dy:y方向畸变量
3、实际图物理坐标系与像素坐标系的关系(基本关系)
dx:
dy:
4、基本公式(在线性标定的基础上)
5、畸变的总体表示
径向畸变Dr
离心畸变Dt
薄棱镜畸变Dp
6、三种畸变的数学模型
径向畸变及其规律(径向约束):
离心畸变:
薄棱镜畸变:
总畸变:
畸变系数:
径向畸变:k1
离心畸变:p1,
薄棱径畸变:s1,
7、模型参数
内参数:
畸变系数:
外参数:
典型标定方法
以非线性优化方法求解
缺点:
8、两步标定法正式开始
1987年由Tsai提出
第一步:求除tz外的所有外参数
第二步:求其余参数
9、两步法的前提
假设:
只考虑二阶径向畸变
10、公式推导
得到以下公式:
11、径向约束公式
上面已经求出:
综合可得:
乘开:
12、第一步
1、求中间变量
为了方便表示与计算,用参数将变量代替:
2、 求|ty|
4、求tx
5、求R:
6、确定ty符号:
设ty>0,
假设条件正确:
剩余参数:fu,fv,
约束方程:
13、第二步
剩余参数:fu,fv,
已知:
求:
方法:非线性优化
确定初始值:
14、U0,V0的标定
直接光学方法
变焦距法
径向排列约束法
直接光学法
用一束激光照射像机镜头
在光路上放一张有孔的纸
使激光的入射光线与反射光线重合
用像机摄取包含激光光斑的图象
光斑的中心坐标即为光心坐标
调整困难但精度较高
变焦距法
条件:光心与镜头的缩放中心重合
实现:
径向排列约束法
利用共面标定板,取zwi=0
非线性优化求解
15、小小总结一下:
前面标定方法共性:
统称:传统标定方法
优点:适用任意摄像机模型,标定精度高
不足:需标定参照物,某些应用中难以实现