动态规划-01背包问题

题目描述

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”。今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的NN元。于是,他把每件物品规定了一个重要度,分为55等:用整数1-51−5表示,第55等最重要。他还从因特网上查到了每件物品的价格(都是整数元)。他希望在不超过NN元(可以等于NN元)的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第jj件物品的价格为v_[j]v[​j],重要度为w_[j]w[​j],共选中了kk件物品,编号依次为j_1,j_2,…,j_kj1​,j2​,…,jk​,则所求的总和为:

 w_[j_k]v[​j1​]×w[​j1​]+v[​j2​]×w[​j2​]+…+v[​jk​]×w[​jk​]。

请你帮助金明设计一个满足要求的购物单。

输入输出格式

输入格式:

第一行,为2个正整数,用一个空格隔开:N m(其中N(<30000)表示总钱数,m(<25)为希望购买物品的个数。)

从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有2个非负整数v p(其中v表示该物品的价格(v≤10000),p表示该物品的重要度(1-5)

输出格式:

1个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<100000000)

#include <iostream>
using namespace std;
int m,n;
int w[10005],v[10005];
int f[10005][10005];
int main()
{
	cin >> n >> m;
	for(int i = 1;i <= m;i++){
		cin >> v[i] >> w[i];
		w[i]*=v[i];
	}
	for(int i = 1;i <= m;i++){
		for(int j = 1 ;j <= n;j++){
			if(v[i] > j){
				f[i][j] = f[i-1][j];
			}else{
				f[i][j] = max(f[i-1][j],f[i-1][j-v[i]]+w[i]);
				
			}
		}
	}
	cout << f[m][n]; //f[物体的数量][体积]; 
	return 0;
}

1.模板

for(int i = 1;i <= m;i++){
    for(int j = 1;j <= n;j++){
        f[i][j] = f[i-1][j];
        if(j>w[j]){
            f[i][j] = max(f[i][j],f[i-1][j-v[i]]+w[i]);
        }
    }
}

2.解释模板

1)变量的意思

v[i]:代表了第i个物体的体积值

w[i]:代表了第i个物体的价值

f[i][j]:代表了前i个物体在容量为j的背包里面所达到的最大的价值

2)题目的变型

要是题目在价值(w[i])上进行修改变型,那么我们可以在之前对w[i]进行操作,避免后续的操作。

3)本题解析

题目中给出条件的符合01背包的特点,可以使用01背包模板进行解题,但是需要对w[i]进行一个取值操作。w[i]*=v[i]

4)拓展

本题还可以用一位数组进行解答:

for(int i = 1;i <= n;i++){
    for(int j = m;j >= 0;j--){
        if(j>w[i]){
            f[j]=max(f[j],f[j-v[i]]+w[i]);
        }
    }
}

完全背包问题:

for(int i = 1;i <= n;i++){
    for(int j=  0;j < m;j++) {
        if(j>w[i]){
            f[i][j] = max(f[i][j],f[i-1][j-v[i]]+w[i]);
        }
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值