目录
1. 源数据
dic = {
"course": ['Java', 'Python', 'PHP', 'C'],
"score": [11, 22, 33, 44]
}
df = pd.DataFrame(dic)
2. shape【形状】
df.shape
3. size【长度】
行 * 列
df.size
4. head()【查询前几列数据】
默认n=5查询的是前五条数据
df.head()
5. tail()【查询后几列数据】
df.tail()
6.describe()【统计性描述】
"""
count:数量统计,此列共有多少有效值
mean:均值
std:标准差
min:最小值
25%:四分之一分位数
50%:二分之一分位数
75%:四分之三分位数
max:最大值
"""
df.describe()
7.dtypes【查看每一列的数据类型】
df.dtypes
8.在末尾插入一列数据
df['age'] = [80, 70, 60, 50]
9.在指定位置插入一列数据
df.insert(2, 'name', ['张三', '李四', '王五', '赵六'])
10.在末尾插入一行数据
newRow = pd.DataFrame({"course": "Javascript", "score": 66, "name": "魁拔", "age": 30}, index=[4])
df2 = df.append(newRow)
11.在指定位置插入一行数据
row_n = 1
newRow = pd.DataFrame({"course": "C++", "score": 55, "name": "田七", "age": 40}, index=[row_n])
pd_arr1 = df[:row_n]
pd_arr2 = df[row_n:]
pd_arr = pd_arr1.append(newRow, ignore_index=True).append(pd_arr2, ignore_index=True)
12.根据行索引修改某一行的值
row = ['C++', '55', '田七', '40']
df.iloc[3] = row
13.根据列索引修改每一列的数据
df['age'] = [10, 20, 30, 40]
14. 删除指定的行或列
# inplace:是否在原有数据上进行修改
# ignore_index:重新生成索引
df.drop(['name'], axis=1, inplace=True) # 删除列
df.drop([0], axis=0, inplace=True) # 删除行
15. 按照指定的列进行排序
dic = {
"wellName": ['21-171', '21-171', '21-171', '21-171', '21-170', '21-170', '21-170', '21-170'],
"score": [1, 2, 3, 4, 5, 6, 7, 8]
}
df = pd.DataFrame(dic)
df = df.sort_values(by=['wellName', 'score'], ascending=True) # 数据排序