Pandas(第十集:DataFrame基本属性和方法)


1. 源数据

dic = {
    "course": ['Java', 'Python', 'PHP', 'C'],
    "score": [11, 22, 33, 44]
}
df = pd.DataFrame(dic)

在这里插入图片描述

2. shape【形状】

df.shape

在这里插入图片描述

3. size【长度】

行 * 列

df.size

在这里插入图片描述

4. head()【查询前几列数据】

默认n=5查询的是前五条数据

df.head()

在这里插入图片描述

5. tail()【查询后几列数据】

df.tail()

在这里插入图片描述

6.describe()【统计性描述】

"""
count:数量统计,此列共有多少有效值
mean:均值
std:标准差
min:最小值
25%:四分之一分位数
50%:二分之一分位数
75%:四分之三分位数
max:最大值
"""
df.describe()

在这里插入图片描述

7.dtypes【查看每一列的数据类型】

df.dtypes

在这里插入图片描述

8.在末尾插入一列数据

df['age'] = [80, 70, 60, 50]

在这里插入图片描述

9.在指定位置插入一列数据

df.insert(2, 'name', ['张三', '李四', '王五', '赵六'])

在这里插入图片描述

10.在末尾插入一行数据

newRow = pd.DataFrame({"course": "Javascript", "score": 66, "name": "魁拔", "age": 30}, index=[4])
df2 = df.append(newRow)

在这里插入图片描述

11.在指定位置插入一行数据

row_n = 1
newRow = pd.DataFrame({"course": "C++", "score": 55, "name": "田七", "age": 40}, index=[row_n])
pd_arr1 = df[:row_n]
pd_arr2 = df[row_n:]
pd_arr = pd_arr1.append(newRow, ignore_index=True).append(pd_arr2, ignore_index=True)

在这里插入图片描述

12.根据行索引修改某一行的值

row = ['C++', '55', '田七', '40']
df.iloc[3] = row

在这里插入图片描述

13.根据列索引修改每一列的数据

df['age'] = [10, 20, 30, 40]

在这里插入图片描述

14. 删除指定的行或列

# inplace:是否在原有数据上进行修改
# ignore_index:重新生成索引
df.drop(['name'], axis=1, inplace=True)  # 删除列
df.drop([0], axis=0, inplace=True)  # 删除行

在这里插入图片描述

15. 按照指定的列进行排序

dic = {
    "wellName": ['21-171', '21-171', '21-171', '21-171', '21-170', '21-170', '21-170', '21-170'],
    "score": [1, 2, 3, 4, 5, 6, 7, 8]
}
df = pd.DataFrame(dic)
df = df.sort_values(by=['wellName', 'score'], ascending=True)  # 数据排序

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Monly21

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值