2.9 逆矩阵

逆矩阵

矩阵乘以向量 A x = y A\mathbf{x}=\mathbf{y} Ax=y ,可以看成函数,输入是向量 x \mathbf{x} x ,输出是向量 y \mathbf{y} y 。变换矩阵 A m n A_{mn} Amn n n n 维空间向量 x \mathbf{x} x 映射为 m m m 维空间向量 y \mathbf{y} y 。函数定义域是 n n n 维空间 R n R^n Rn ,值域是 m m m 维空间 R m R^m Rm 。如果函数对应的映射是一一映射,则存在逆映射。变换矩阵 A A A 满足什么条件,该映射是一一映射?

一一映射首先要求是单射,即向量 y \mathbf{y} y 对应唯一向量 x \mathbf{x} x ,使 A x = y A\mathbf{x}=\mathbf{y} Ax=y 成立。矩阵乘以向量 A x A\mathbf{x} Ax 就是矩阵 A A A 的向量组的线性组合,根据第一章的向量组线性组合理论,当矩阵 A A A 的向量组是无关组时,存在唯一表示 x \mathbf{x} x 。所以单射要求矩阵 A A A 的向量组是无关组。

一一映射其次要求是满射,即值域内任意向量 y \mathbf{y} y 都有对应向量 x \mathbf{x} x ,使 A x = y A\mathbf{x}=\mathbf{y} Ax=y 成立。 根据第一章的向量组线性组合理论,当矩阵 A A A 的向量组的极大无关组是基时,满足满射要求。

矩阵 A A A 的向量组是无关组,且极大无关组是基,则只有基才满足这两个要求。

重要性质 矩阵 A A A 的向量组是基时, A x = y A\mathbf{x}=\mathbf{y} Ax=y 所对应的映射是一一映射。

A x = y A\mathbf{x}=\mathbf{y} Ax=y 存在逆映射 T ( y ) = x T(\mathbf{y}) = \mathbf{x} T(y)=x ,证明该逆映射是线性变换。

证:如果 A x = y A\mathbf{x}=\mathbf{y} Ax=y ,则 A ( λ x ) = λ A x = λ y A(\mathbf{\lambda x})=\lambda A\mathbf{ x} =\lambda \mathbf{y} A(λx)=λAx=λy ,这表明如果 T ( y ) = x T(\mathbf{y}) = \mathbf{x} T(y)=x 则 T ( λ y ) = λ x 则T(\lambda \mathbf{y}) = \lambda \mathbf{x} T(λy)=λx

如果 A x 1 = y 1 , A x 2 = y 2 A\mathbf{x_1}=\mathbf{y_1},A\mathbf{x_2}=\mathbf{y_2} Ax1=y1,Ax2=y2 ,则 A ( x 1 + x 2 ) = A x 1 + A x 2 = y 1 + y 2 A(\mathbf{x_1+x_2})= A\mathbf{x_1}+A\mathbf{x_2} = \mathbf{y_1}+\mathbf{y_2} A(x1+x2)=Ax1+Ax2=y1+y2 ,这表明如果 T ( y 1 ) = x 1 , T ( y 2 ) = x 2 T(\mathbf{y_1}) = \mathbf{x_1},T(\mathbf{y_2}) = \mathbf{x_2} T(y1)=x1,T(y2)=x2 则 T ( y 1 + y 2 ) = x 1 + x 2 则T(\mathbf{y_1}+\mathbf{y_2}) = \mathbf{x_1}+\mathbf{x_2} T(y1+y2)=x1+x2 。所以逆映射是线性变换。

每个线性变换对应变换矩阵(后面章节证明),所以逆映射能表示成矩阵形式 B y = x B\mathbf{y} = \mathbf{x} By=x ,记 B = A − 1 B=A^{-1} B=A1

定义 逆矩阵 A x = y A\mathbf{x}=\mathbf{y} Ax=y 对应的一一映射的逆映射所对应的变换矩阵,记为 A − 1 A^{-1} A1 ,所以 A − 1 y = x A^{-1}\mathbf{y} = \mathbf{x} A1y=x A − 1 A^{-1} A1 称为矩阵 A A A 的逆矩阵,称矩阵 A A A 是可逆的,也称为非奇异矩阵。若 A x = y A\mathbf{x}=\mathbf{y} Ax=y 不是一一映射,称矩阵 A A A 是不可逆的,也称为奇异矩阵。

重要性质 矩阵可逆条件 矩阵 A A A 是方阵且矩阵 A A A 的向量组是基。

重要性质 矩阵 A A A 可逆时,对任意向量 b \mathbf{b} b ,线性方程 A x = b A\mathbf{x}=\mathbf{b} Ax=b 有唯一解 x = A − 1 b \mathbf{x} = A^{-1}\mathbf{b} x=A1b

根据逆映射直接得到该性质,这是逆矩阵的一个重要用途。

定义 m m m 阶单位矩阵 方阵 E m = [ e 1 , ⋯   , e m ] E_m=\left[ \mathbf{e_1},\cdots,\mathbf{e_m}\right] Em=[e1,,em] m m m 维向量 e i = ( 0 , ⋯   , 1 , ⋯   , 0 ) , i ∈ [ 1 , m ] \mathbf{e_i} = (0,\cdots,1,\cdots,0),\quad i \in \left[ 1,m\right] ei=(0,,1,,0),i[1,m] ,只有第 i i i 个分量为1,其他分量均为0, e i \mathbf{e_i} ei 称为标准单位向量。
E 2 = [ 1 0 0 1 ] E 3 = [ 1 0 0 0 1 0 0 0 1 ] E_2 = \left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\\end{matrix} \right]\qquad E_3 = \left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\0 & 0 & 1\end{matrix} \right] E2=[1001]E3=100010001
分别是2阶和3阶单位矩阵。单位矩阵数值上看,对角线(从左上角到右下角的直线)元素都是1,其它元素都是0。

重要性质 对任意向量 x \mathbf{x} x E x = x E\mathbf{x}=\mathbf{x} Ex=x 成立;对任意矩阵 A A A E A = A EA=A EA=A A E = A AE=A AE=A 成立。

单位矩阵类似实数 1 1 1 ,变换后不改变原向量。

重要性质 逆矩阵同时满足 A A − 1 = E , A − 1 A = E AA^{-1} = E,A^{-1}A = E AA1=E,A1A=E

证:因为 A x = y A\mathbf{x}=\mathbf{y} Ax=y A − 1 y = x A^{-1}\mathbf{y} = \mathbf{x} A1y=x 对任意向量成立,所以 ( A A − 1 ) y = A ( A − 1 y ) = A x = y (AA^{-1})\mathbf{y}=A(A^{-1}\mathbf{y})=A\mathbf{x}=\mathbf{y} AA1y=A(A1y)=Ax=y ( A − 1 A ) x = A − 1 ( A x ) = A − 1 y = x (A^{-1}A)\mathbf{x}=A^{-1}(A\mathbf{x})=A^{-1}\mathbf{y}=\mathbf{x} A1Ax=A1(Ax)=A1y=x 对任意向量 x , y \mathbf{x},\mathbf{y} x,y 成立,任意向量 x , y \mathbf{x},\mathbf{y} x,y 分别取 m m m 个标准单位向量时,得证 A A − 1 = E , A − 1 A = E AA^{-1} = E,A^{-1}A = E AA1=E,A1A=E

逆矩阵类似实数的倒数,实数 a ≠ 0 a\ne0 a=0 总存在惟一的实数 b b b ,使 a b = b a = 1 ab = ba = 1 ab=ba=1 ,此数 b b b 即是 a a a 的倒数。对应 a ≠ 0 a\ne0 a=0 的条件,矩阵可逆条件是矩阵 A A A 的向量组是基,那存在由矩阵 A A A 确定的某个实数,当这个实数不为0时,矩阵可逆吗?这就与实数完美对应了。这个数存在,第一章向量理论指出,基向量构成的多边体体积不等于0,所以只要计算出矩阵 A A A 的向量组的体积,该体积定义为矩阵 A A A 的行列式 d e t A det A detA 。如何计算行列式后面章节介绍。

重要性质 矩阵可逆条件 矩阵 A A A 的行列式 d e t A ≠ 0 det A \ne 0 detA=0

重要性质 逆矩阵唯一。

证:假设 B , C B, C B,C 都是矩阵 A A A 的逆,则 B = B E = B ( A C ) = ( B A ) C = E C = C B=BE=B(AC)=(BA)C=EC=C B=BE=B(AC)=(BA)C=EC=C

重要性质 方阵 A A A ,若存在方阵 B B B ,使 A B = E AB=E AB=E B A = E BA=E BA=E 成立,则矩阵 B B B 是矩阵 A A A 的逆, B = A − 1 B=A^{-1} BA1

证:以 A B = E AB=E AB=E 为例, A B AB AB 是单位矩阵,单位矩阵的向量组是基,所以 A B AB AB 是一一映射,又 A , B A,B A,B 都是方阵,则 A , B A,B A,B 都是一一映射(根据映射理论),所以 A , B A,B A,B 均可逆。 B = E B = ( A − 1 A ) B = A − 1 ( A B ) = A − 1 ( E ) = A − 1 B=EB=(A^{-1}A)B=A^{-1}(AB)=A^{-1}(E)=A^{-1} B=EB=(A1A)B=A1(AB)=A1(E)=A1

该性质是代数上求逆矩阵的方法,即寻找方阵使之满足 A B = E AB=E AB=E B A = E BA=E BA=E ,则矩阵 A A A B B B 互逆。

特别注意,对于部分不是方阵的矩阵 A A A ,存在矩阵 B B B ,使 A B = E AB=E AB=E B A = E BA=E BA=E 成立,它们不能同时成立,矩阵 B B B 不是矩阵 A A A 的逆。后面会专门讨论,它们对应重要概念。

逆矩阵 A − 1 A^{-1} A1 是个代数符号,并不知道矩阵的具体数值,只是其满足 A A − 1 = E , A − 1 A = E AA^{-1} = E,A^{-1}A = E AA1=E,A1A=E 。就如同 2 \sqrt2 2 ,并不知道具体数,但满足 ( 2 ) 2 = 2 (\sqrt2)^2=2 (2 )2=2 。高斯消元法可求逆矩阵的具体数值。一般来说,逆矩阵与原矩阵的数值关系很复杂,只有特殊矩阵,才能直接写出逆矩阵。

对于 2 2 2 阶方阵,可以采用待定系数法求逆矩阵。
2 2 2 阶可逆方阵为 A = [ a b c d ] A = \left[ \begin{matrix} a & b \\ c & d \end{matrix} \right] A=[acbd] ,其向量需是基,要求两个向量不能同方向,得 a / c ≠ b / d a/c \ne b/d a/c=b/d ,即 a d − b c ≠ 0 ad - bc \ne 0 adbc=0 。假设逆矩阵为 A − 1 = [ a ′ b ′ c ′ d ′ ] A^{-1} = \left[ \begin{matrix} a' & b' \\ c' & d' \end{matrix} \right] A1=[acbd] ,则根据 A A − 1 = E AA^{-1} = E AA1=E 得, A A − 1 = [ a b c d ] [ a ′ b ′ c ′ d ′ ] = [ a a ′ + b c ′ a b ′ + b d ′ c a ′ + d c ′ c b ′ + d d ′ ] = [ 1 0 0 1 ] AA^{-1} = \left[ \begin{matrix} a & b \\ c & d \end{matrix} \right] \left[ \begin{matrix} a' & b' \\ c' & d' \end{matrix} \right] = \left[ \begin{matrix} aa'+bc' & ab'+bd' \\ ca'+dc' & cb'+dd' \end{matrix} \right] = \left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] AA1=[acbd][acbd][aa+bcca+dcab+bdcb+dd]=[1001] ,令对应元素相等,得4个方程,解这4个方程即可得逆矩阵元素,结果为 A − 1 = [ d − b − c a ] / ( a d − b c ) A^{-1}=\left[ \begin{matrix} d & -b \\ -c & a \end{matrix} \right] / (ad-bc) A1=[dcba]/(adbc) 。理论上可以采用同样的方法计算3阶方阵的逆,但由于公式太复杂,故略。

例如,单位矩阵的逆是单位矩阵。因为 E E = E EE=E EE=E,所以 E − 1 = E E^{-1}=E E1=E

定义 对角矩阵 对角线以外的元素都是 0,简称对角阵,
Λ = [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ n ] \Lambda = \left[ \begin{matrix} \lambda_1 & 0 & \cdots & 0\\0 &\lambda_2 & \cdots & 0\\\vdots & \vdots & & \vdots\\0 & 0 & \cdots & \lambda_n \end{matrix} \right] Λ=λ1000λ2000λn
对角矩阵简记 Λ = d i a g ( λ 1 , λ 2 , . . . , λ n ) \Lambda =diag(\lambda_1,\lambda_2,...,\lambda_n) Λ=diag(λ1,λ2,...,λn)

当对角线元素都不等于0时,对角矩阵可逆,逆为: Λ − 1 = d i a g ( 1 λ 1 , 1 λ 2 , . . . , 1 λ n ) \Lambda^{-1} =diag(\frac{1}{\lambda_1},\frac{1}{\lambda_2},...,\frac{1}{\lambda_n}) Λ1=diag(λ11,λ21,...,λn1)

定义 正交矩阵 方阵 Q Q Q 的列向量都是单位向量,且两两正交。

根据公式
Q T Q = [ q 1 T q 1 q 1 T q 2 ⋯   , q 1 T q n ⋮ q n T q 1 q n T q 2 ⋯   , q n T q n ] Q^TQ = \left[ \begin{matrix} \mathbf{q^T_{1}}\mathbf{q_1} & \mathbf{q^T_{1}}\mathbf{q_2} \cdots, \mathbf{q^T_{1}}\mathbf{q_n}\\ \vdots \\ \mathbf{q^T_{n}}\mathbf{q_1} & \mathbf{q^T_{n}}\mathbf{q_2} \cdots, \mathbf{q^T_{n}}\mathbf{q_n}\end{matrix} \right] QTQ=q1Tq1qnTq1q1Tq2,q1TqnqnTq2,qnTqn
正交矩阵的列向量都是单位向量,且两两正交,则 q i T q j = 1 f o r i = j ; = 0 f o r i ≠ j \mathbf{q^T_{i}}\mathbf{q_j}=1 \quad for \quad i=j; \quad =0 \quad for \quad i \ne j qiTqj1fori=j;=0fori=j ,所以 Q T Q = E Q^TQ=E QTQ=E 。正交矩阵用大写字母 Q Q Q 表示。

重要性质 正交矩阵 Q T Q = E Q^TQ=E QTQ=E 成立, Q − 1 = Q T Q^{-1}=Q^T Q1=QT

正交矩阵的逆是转置,该等式把矩阵重要的两种操作联系在一起!

重要性质 正交矩阵 Q Q T = E QQ^T=E QQT=E 成立,且 Q Q T = q 1 q 1 T + q 2 q 2 T + ⋯ + q n q n T QQ^T = \mathbf{q_1}\mathbf{q^T_{1}}+\mathbf{q_2}\mathbf{q^T_{2}}+\cdots+\mathbf{q_n}\mathbf{q^T_{n}} QQT=q1q1T+q2q2T++qnqnT 。任意向量
b = Q Q T b = ( q 1 q 1 T + q 2 q 2 T + ⋯ + q n q n T ) b = q 1 q 1 T b + q 2 q 2 T b + ⋯ + q n q n T b = q 1 ( q 1 T b ) + q 2 ( q 2 T b ) + ⋯ + q n ( q n T b ) \mathbf{b} =QQ^T\mathbf{b} =(\mathbf{q_1}\mathbf{q^T_{1}}+\mathbf{q_2}\mathbf{q^T_{2}}+\cdots+\mathbf{q_n}\mathbf{q^T_{n}})\mathbf{b} \\ =\mathbf{q_1}\mathbf{q^T_{1}}\mathbf{b}+\mathbf{q_2}\mathbf{q^T_{2}}\mathbf{b}+\cdots+\mathbf{q_n}\mathbf{q^T_{n}}\mathbf{b} \\ = \mathbf{q_1}(\mathbf{q^T_{1}}\mathbf{b})+\mathbf{q_2}(\mathbf{q^T_{2}}\mathbf{b})+\cdots+\mathbf{q_n}(\mathbf{q^T_{n}}\mathbf{b}) b=QQTb=(q1q1T+q2q2T++qnqnT)b=q1q1Tb+q2q2Tb++qnqnTb=q1(q1Tb)+q2(q2Tb)++qn(qnTb)
这就是向量的正交分解。

对角矩阵和正交矩阵很容易求出逆矩阵,它们都是简单矩阵,在线性代数中十分重要。

逆矩阵满足下述运算规律:

  1. A A A 可逆,则 A − 1 A^{-1} A1 亦可逆,且 ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A
  2. A A A 可逆,数 λ ≠ 0 \lambda \ne 0 λ=0 ,则 λ A \lambda A λA 可逆,且 ( λ A ) − 1 = 1 λ A − 1 (\lambda A)^{-1} = \frac{1}{\lambda} A^{-1} (λA)1=λ1A1
  3. A , B A,B A,B 为同阶方阵且均可逆,则 A B AB AB 亦可逆,且 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1} =B^{-1}A^{-1} (AB)1=B1A1
  4. A A A 可逆,则 A T A^T AT 亦可逆 ,且 ( A T ) − 1 = ( A − 1 ) T ( A ^T)^{-1} = ( A ^{-1})^T (AT)1=(A1)T

性质3证: ( A B ) ( B − 1 A − 1 ) = A ( B B − 1 ) A − 1 = A A − 1 = E (AB)(B^{-1}A^{-1})=A(BB^{-1})A^{-1}=AA^{-1}=E (AB)(B1A1)=A(BB1)A1=AA1=E ,所以 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1} =B^{-1}A^{-1} (AB)1=B1A1 。该公式具有物理意义,向量先经过矩阵 A A A 的变换,然后是 B B B 的变换,逆变换是把结果向量变回去,显然要先进行矩阵 B B B 的逆操作,然后是矩阵 A A A 的逆操作。就如同先穿袜子再穿鞋,脱的顺序要反,即先脱鞋再脱袜子。

性质4证: ( A T ) ( A − 1 ) T = ( A − 1 A ) T = E T = E ( A ^T)( A ^{-1})^T=( A ^{-1}A)^T=E^T=E (AT)(A1)T=(A1A)T=ET=E ,所以 ( A T ) − 1 = ( A − 1 ) T ( A ^T)^{-1} = ( A ^{-1})^T (AT)1=(A1)T

特别提醒:即使矩阵都可逆, ( A + B ) − 1 = A − 1 + B − 1 (A+B)^{-1}=A^{-1}+B^{-1} (A+B)1=A1+B1 不成立,如同实数 ( a + b ) − 1 ≠ a − 1 + b − 1 (a+b)^{-1}\ne a^{-1}+b^{-1} (a+b)1=a1+b1

根据矩阵乘法定义矩阵的幂。

定义 矩阵正整数幂 设 A A A n n n 阶方阵,定义 A 1 = A , A 2 = A 1 A , ⋯   , A k + 1 = A k A A^1 = A, A^2 = A^1A,\cdots,A^{k+1} = A^kA A1=A,A2=A1A,,Ak+1=AkA。其中 k k k 为正整数, A k A^k Ak 就是 k k k A A A 连乘。

显然只有方阵幂才有意义,由于矩阵乘法有结合律,所以矩阵幂满足以下运算规律:

A k A l = A k + l , ( A k ) l = A k l A^kA^l = A^{k+l},(A^k)^l =A^{kl} AkAl=Ak+l,(Ak)l=Akl ,其中 k k k l l l 为正整数。

规定 A 0 = E A^0=E A0=E,当 A A A 可逆时,定义 A − k = ( A − 1 ) k A^{-k} = (A^{-1})^k Ak=(A1)k ,这样就定义了可逆矩阵的整数幂。

显然对角矩阵的正整数幂为 Λ k = d i a g ( λ 1 k , λ 2 k , . . . , λ n k ) \Lambda^k =diag(\lambda_1^k,\lambda_2^k,...,\lambda_n^k) Λk=diag(λ1k,λ2k,...,λnk) ;对角矩阵可逆时,对角矩阵的整数幂为 Λ k = d i a g ( λ 1 k , λ 2 k , . . . , λ n k ) \Lambda^k =diag(\lambda_1^k,\lambda_2^k,...,\lambda_n^k) Λk=diag(λ1k,λ2k,...,λnk)

如何证明矩阵可逆?

性质:若矩阵可分解为若干可逆矩阵的乘积,则矩阵可逆,同时也得到逆矩阵。

例如:设矩阵 A , B , A + B A,B,A+B ABA+B 为同阶可逆矩阵,证 A − 1 + B − 1 A^{-1}+B^{-1} A1+B1 可逆。

证:
A − 1 + B − 1 = A − 1 B B − 1 + E B − 1 = ( A − 1 B + E ) B − 1 = ( A − 1 B + A − 1 A ) B − 1 = A − 1 ( B + A ) B − 1 = A − 1 ( A + B ) B − 1 ( A − 1 + B − 1 ) − 1 = ( A − 1 ( A + B ) B − 1 ) − 1 = B ( A + B ) − 1 A A^{-1}+B^{-1} = A^{-1}BB^{-1}+EB^{-1} = (A^{-1}B+E)B^{-1} \\ = (A^{-1}B+A^{-1}A)B^{-1} = A^{-1}(B+A)B^{-1} = A^{-1}(A+B)B^{-1} \\ (A^{-1}+B^{-1})^{-1} = (A^{-1}(A+B)B^{-1})^{-1} = B(A+B)^{-1}A A1+B1=A1BB1+EB1=(A1B+E)B1=(A1B+A1A)B1=A1(B+A)B1=A1(A+B)B1(A1+B1)1=(A1(A+B)B1)1=B(A+B)1A

同理,可得另一表达式 ( A − 1 + B − 1 ) − 1 = A ( A + B ) − 1 B (A^{-1}+B^{-1})^{-1} =A(A+B)^{-1}B (A1+B1)1=A(A+B)1B 。 可见逆矩阵在特定情况下,有多个表达式,但它们是等价的。

技巧性极强,需要灵活运用 E = A A − 1 = A − 1 A , A = E A = A E E=AA^{-1}=A^{-1}A,A=EA=AE E=AA1=A1A,A=EA=AE 等式,矩阵乘法的分配率和结合律。

线性变换小节提出基变换关系 ( w 1 = A v 1 , ⋯   , w n = A v n ) (\mathbf{w_1}=A\mathbf{v_1},\cdots,\mathbf{w_n}=A\mathbf{v_n}) (w1=Av1,,wn=Avn) 可以得到变换矩阵 ,现给出证明。因为 W = A V W=AV W=AV ,基矩阵 V V V 的向量组是基,所以可逆,则 A = A ( V V − 1 ) = ( A V ) V − 1 = W V − 1 A=A(VV^{-1})=(AV)V^{-1}=WV^{-1} A=A(VV1)=(AV)V1=WV1 ,所以变换矩阵 A A A 等于基象矩阵 W W W 乘以基矩阵的逆 V − 1 V^{-1} V1

重要性质 可逆矩阵把基变换为基。

证:设基矩阵为 V V V ,可逆矩阵 A A A 将其变换为 W = A V W=AV W=AV ,由于矩阵 A A A V V V 均可逆,故矩阵 W W W 可逆,其向量组是基。

重要性质 可逆矩阵把无关组变换为无关组。

无关组是基的真子集,根据上面性质得证。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值