1.8 正交补空间

本文深入探讨了正交补空间的概念,阐述了其在数学中的重要性质和计算方法。正交补空间是线性代数的基本概念之一,对于理解线性方程组和空间结构至关重要。文章详细解释了如何通过内积计算来确定一个子空间的正交补,并提供了具体的计算步骤和实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正交补空间

重要性质 S1S_1S1SSS 子空间,则必存在唯一子空间 S2S_2S2 使得 S=S2⊕S1S = S_2 \oplus S_1S=S2S1 和 $ S_2 \bot S_1$ ,称 S2S_2S2S1S_1S1 的正交补空间,记为 S1⊥S_1^{\bot}S1dimS1⊥=dimS−dimS1dim S_1^{\bot} = dim S - dim S_1dimS1=dimSdimS1

正交补空间包含了垂直于原空间的所有向量。强调下,如果 S1S_1S1 是整个空间,其正交补空间为 0\mathbf{0}0 维空间,只包含 0\mathbf{0}0 向量。

子空间的正交补和直和补空间,有什么差别呢?在于唯一性!正交补空间唯一,直和补有无穷多。数学喜欢唯一性,因为唯一性能大大简化问题。比如函数,单射的函数就很好研究,而多射函数难以研究。为什么选垂直的补空间作为唯一,而不选其它角度(如30度,60度等等)的补空间作为唯一呢?因为垂直时内积为0,如同最简基那节,0能解耦。

比如,二维空间,直线是子空间,其正交补就是其垂线,唯一;其直和补是任意不共线的直线,任意多。三维空间,平面是子空间,其正交补就是其垂线,唯一;其直和补是任意不共面的直线,任意多。

如果子空间 S1S_1S1 由向量组 V=(v1,⋯ ,vn)V = (\mathbf{v_1},\cdots,\mathbf{v_n})V=(v1,,vn) 张成,如何求其正交补空间呢?这个问题是线性代数基本问题之一,是理解线性方程的核心之一,必须十分重视。

根据正交补空间 S1⊥S_1^{\bot}S1 包含了垂直于原空间 S1S_1S1 的所有向量,是个向量集合。 S1⊥S_1^{\bot}S1 中任意向量 v\mathbf{v}v 垂直于空间 S1S_1S1 ,则只需也必须垂直于向量组 VVV 中所有向量,即
(v,vi)=0∀i∈[1,n] (\mathbf{v},\mathbf{v_i}) = 0 \quad \forall i \in [1,n] (v,vi)=0i[1,n]
满足上式关系的所有向量构成的集合就是 S1⊥S_1^{\bot}S1 。这是定义空间的第二种方式,与向量组的线性组合定义空间完全不同。

需用计算法求出正交补,每个内积为0分别得一个方程,共 nnn 个方程。

mmm 维空间中 nnn 个向量的向量组 S1=(v1,⋯ ,vn)S_1 = (\mathbf{v_1},\cdots,\mathbf{v_n})S1=(v1,,vn) ,令 vi=(Vi1,⋯ ,Vij,⋯ ,Vim)\mathbf{v_i} = (\mathbf{V_{i1}},\cdots,\mathbf{V_{ij}},\cdots,\mathbf{V_{im}})vi=(Vi1,,Vij,,Vim) ,即第 jjj 个分量为 Vij\mathbf{V_{ij}}VijS1⊥S_1^{\bot}S1 中任意向量 v=(α1,⋯ ,αm)\mathbf{v}=(\alpha_1,\cdots,\alpha_m)v=(α1,,αm) ,根据内积计算规则,可得方程组
α1V11+⋯+αiV1i+⋯+αmV1m=0α1V21+⋯+αiV2i+⋯+αmV2m=0⋮α1Vn1+⋯+αiVni+⋯+αmVnm=0 \alpha_1\mathbf{V_{11}}+\cdots+\alpha_i\mathbf{V_{1i}}+\cdots+\alpha_m\mathbf{V_{1m}} = 0 \\ \alpha_1\mathbf{V_{21}}+\cdots+\alpha_i\mathbf{V_{2i}}+\cdots+\alpha_m\mathbf{V_{2m}} = 0 \\ \vdots \\ \alpha_1\mathbf{V_{n1}}+\cdots+\alpha_i\mathbf{V_{ni}}+\cdots+\alpha_m\mathbf{V_{nm}} = 0 α1V11++αiV1i++αmV1m=0α1V21++αiV2i++αmV2m=0α1Vn1++αiVni++αmVnm=0
nnn 个方程 mmm 个未知数。方程形式和基的判断问题方程十分相似,有两点不同:第一方程数量为向量数量 nnn 个,第二与未知数 αi\alpha_iαi 相乘的系数不是向量 vi\mathbf{v_i}vi 的分量,而是所有向量的第 iii 个分量。

例如,二维空间中,向量组 V=(v1),v1=(1,2)\mathbf{V}=(\mathbf{v_1}),\mathbf{v_1} = (1,2)V=(v1),v1=(1,2) ,对应方程为
1α1+2α2=0 1\alpha_1+2\alpha_2 = 0 1α1+2α2=0

是直线,为正交补空间。

例如,三维空间中,向量组 V=(v1),v1=(1,2,3)\mathbf{V}=(\mathbf{v_1}),\mathbf{v_1} = (1,2,3)V=(v1),v1=(1,2,3) 对应方程为
1α1+2α2+3α3=0 1\alpha_1+2\alpha_2+3\alpha_3 = 0 1α1+2α2+3α3=0

是平面,与向量 v1\mathbf{v_1}v1 垂直,为正交补空间。

正交补空间是空间,空间可以用向量组的线性组合表示,那补空间可以吗?
以上面方程为例介绍,1个方程3个未知数,故2个变量是自由变量,可令自由变量为 α2和α3\alpha_2和\alpha_3α2α3 ,取 (0,1)(0,1)(0,1) 时得 α1=−(2α2+3α3)=−3\alpha_1=-(2\alpha_2+3\alpha_3) = -3α1=(2α2+3α3)=3 ,故 (−3,0,1)(-3,0,1)(3,0,1) 是解,其任意数乘也是解;取 (1,0)(1,0)(1,0) 时得 α1=−(2α2+3α3)=−2\alpha_1=-(2\alpha_2+3\alpha_3) = -2α1=(2α2+3α3)=2 ,故 (−2,0,1)(-2,0,1)(2,0,1) 是解,其任意数乘也是解!故这两个向量的线性组合都是方程的解。这两个向量线性无关,故其张成子空间是二维。所以得到正交补空间的线性组合表示。
S1⊥={α(−3,0,1)+β(−2,0,1)} S_1^{\bot}=\{\alpha(-3,0,1)+\beta(-2,0,1)\} S1={α(3,0,1)+β(2,0,1)}
再如,三维空间中,向量组 V=(v1,v2),v1=(1,2,3)\mathbf{V}=(\mathbf{v_1},\mathbf{v_2}),\mathbf{v_1} = (1,2,3)V=(v1,v2),v1=(1,2,3)v2=(4,5,6)\mathbf{v_2} = (4,5,6)v2=(4,5,6) 对应方程为
1α1+2α2+3α3=04α1+5α2+6α3=0 1\alpha_1+2\alpha_2+3\alpha_3 = 0 \\ 4\alpha_1+5\alpha_2+6\alpha_3 = 0 1α1+2α2+3α3=04α1+5α2+6α3=0
是直线,与向量 v1\mathbf{v_1}v1v2\mathbf{v_2}v2 垂直,为正交补空间。求线性组合如下,2个方程3个未知数,故1个变量是自由变量,可令自由变量为 α3\alpha_3α3 ,取 (1)(1)(1) 时得 1α1+2α2+3=04α1+5α2+6=01\alpha_1+2\alpha_2+3 = 0 \\4\alpha_1+5\alpha_2+6 = 01α1+2α2+3=04α1+5α2+6=0 ,故 (1,−2,1)(1,-2,1)(1,2,1) 是解,其任意数乘也是解,即该向量的线性组合,其张成子空间是一维。所以得到正交补空间的线性组合表示。
S1⊥={α(1,−2,1)} S_1^{\bot}=\{\alpha(1,-2,1)\} S1={α(1,2,1)}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值