4.7 列满秩方程

4.7 列满秩方程

对于可逆矩阵,高斯约当消元法可以求得方程的解和逆矩阵,同样也可以应用于列满秩矩阵。列满秩矩阵进行高斯约当消元法,最终矩阵变为单位矩阵和零矩阵。例如方程

2 x + 4 y = 2 4 x + 9 y = 8 6 x + 13 y = 10 2x + 4y = 2 \\ 4x + 9y = 8 \\ 6x + 13y = 10 2x+4y=24x+9y=86x+13y=10

系数矩阵为
A = [ 2 4 4 9 6 13 ] A= \left[ \begin{matrix} 2 & 4 \\ 4 & 9 \\ 6 & 13 \end{matrix} \right] A=2464913
是列满秩矩阵。

方程有 2 2 2 个未知数,但是有 3 3 3 个方程,一般来说是矛盾方程,无解。但当 b \mathbf{b} b 能被矩阵 A A A 向量组表示时,有唯一解。

增广矩阵进行高斯消元法

[ 2 4 2 4 9 8 6 13 10 ] ⇒ [ 2 4 2 0 1 4 0 1 4 ] ⇒ [ 2 4 2 0 1 4 0 0 0 ] \left[ \begin{matrix} 2 & 4 & 2\\ 4 & 9 & 8\\ 6 & 13 & 10 \end{matrix} \right] \Rightarrow \left[ \begin{matrix} 2 & 4 & 2\\ 0 & 1 & 4\\ 0 & 1 & 4 \end{matrix} \right]\Rightarrow \left[ \begin{matrix} 2 & 4 & 2\\ 0 & 1 & 4\\ 0 & 0 & 0 \end{matrix} \right] 24649132810200411244200410240

注意此时最后一个方程变为 0 x + 0 y = 0 0x+0y=0 0x+0y=0 ,是永远成立的平凡方程!真正有效的方程数量是 2 2 2 个。方程解为 x = − 7 , y = 4 x=-7,y=4 x=7,y=4

如果第3个方程系数改变

2 x + 4 y = 2 4 x + 9 y = 8 6 x + 13 y = 11 2x + 4y = 2 \\ 4x + 9y = 8 \\ 6x + 13y = 11 2x+4y=24x+9y=86x+13y=11

最后变换为

[ 2 4 2 0 1 4 0 0 1 ] \left[ \begin{matrix} 2 & 4 & 2\\ 0 & 1 & 4\\ 0 & 0 & 1 \end{matrix} \right] 200410241

注意此时最后一个方程变为 0 x + 0 y = 1 0x+0y=1 0x+0y=1 ,无解!

总结如下,列满秩矩阵 A m n A_{mn} Amn,高斯消元法变换为 [ U n n O m − n , n ] \left[ \begin{matrix} U_{nn} \\ \mathbf{O}_{m-n,n} \end{matrix} \right] [UnnOmn,n] U n n U_{nn} Unn n n n 阶上三角阵,其对角元素是矩阵 A A A 的主元且均不为零, O m − n , n \mathbf{O}_{m-n,n} Omn,n 是零矩阵。矩阵乘法表示为 L m m A = [ U n n O m − n , n ] L_{mm}A = \left[ \begin{matrix} U_{nn} \\ \mathbf{O}_{m-n,n} \end{matrix} \right] LmmA=[UnnOmn,n] L m m L_{mm} Lmm m m m 阶单位下三角阵。

对向量 b \mathbf{b} b ,如果 L m m b = [ b ′ 0 ] L_{mm}\mathbf{b}=\left[ \begin{matrix} \mathbf{b'} \\ \mathbf{0} \end{matrix} \right] Lmmb=[b0] ,即后 m − n m-n mn 个分量都为 0 0 0 ,则方程 A m n x = b A_{mn}\mathbf{x}=\mathbf{b} Amnx=b 有唯一解;只要后 m − n m-n mn 个分量有一个不为 0 0 0 ,则方程无解。

U n n U_{nn} Unn 继续进行高斯约当消元,则变为单位矩阵 E n n E_{nn} Enn ,用矩阵乘法表示为 P m m A = [ E n n O m − n , n ] P_{mm}A = \left[ \begin{matrix} E_{nn} \\ \mathbf{O}_{m-n,n} \end{matrix} \right] PmmA=[EnnOmn,n] P m m P_{mm} Pmm m m m 阶可逆矩阵。

上面的方法是没有进行行对调,如果需要则可以先进行行对调,再进行消元。

矩阵乘法表示,即对任意列满秩矩阵 A A A ,存在可逆矩阵 P , Q P,Q P,Q ,使 P A Q = [ U n n O m − n , n ] PAQ=\left[ \begin{matrix} U_{nn} \\ \mathbf{O}_{m-n,n} \end{matrix} \right] PAQ=[UnnOmn,n] 成立,进一步对 U n n U_{nn} Unn 进行高斯约当消元,则可表示为,存在可逆矩阵 P , Q P,Q P,Q ,使 P A Q = [ E n n O m − n , n ] PAQ=\left[ \begin{matrix} E_{nn} \\ \mathbf{O}_{m-n,n} \end{matrix} \right] PAQ=[EnnOmn,n] 成立。

前面章节介绍了,列满秩矩阵的行向量组是相关组,其极大无关组是 n n n 维空间的基。利用高斯消元法可以找到列满秩矩阵的极大无关组,变换后的矩阵 U n n U_{nn} Unn 对应到矩阵 A A A 的行向量即是极大无关组。本例中
[ 2 4 4 9 ] \left[ \begin{matrix} 2 & 4 \\ 4 & 9 \\ \end{matrix} \right] [2449] 这两个行向量就是矩阵 A A A 行向量的极大无关组。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值