3.1 矩阵的秩

上一章提到,若矩阵 A A A B B B 满足 A B = O A B = \mathbf{O} AB=O ,不能得出 A = O A = \mathbf{O} A=O B = O B = \mathbf{O} B=O 的结论,矩阵 A A A 满足什么条件能得出 B = O B = \mathbf{O} B=O 的结论呢?还提到,线性变换把线性空间变换为线性空间,这两个空间有什么关系呢?第一章以向量为工具研究了线性空间,这章以矩阵为工具研究线性空间。工具不同,但内涵一致,本章内容和第一章紧密联系,一定要熟悉向量理论,才能学好本章。

矩阵的秩

定义 矩阵的列向量空间 矩阵 A A A 的列向量组张成的空间,记为 c o l A col A colA ,简称列空间。

空间是向量集合,采用矩阵表示空间, m m m n n n 列矩阵 A m n A_{mn} Amn 的列向量空间为: { A v : v ∈ R n } \{ A\mathbf{v}:\mathbf{v} \in R^n \} {Av:vRn} ,向量 v \mathbf{v} v 取遍 n n n 维空间中所有向量,列空间是 m m m 维空间。可从两个方面理解,一是矩阵 A A A 列向量组的线性组合,组合系数是向量 v \mathbf{v} v ;二是函数 A x A\mathbf{x} Ax 的值域,定义域是 n n n 维空间。这是把矩阵看作列向量的集合,矩阵也可以看作行向量的集合,对应的空间就是行向量空间。

定义 矩阵的行向量空间 矩阵的行向量组张成的空间,记为 r o w A row A rowA ,简称行空间。

一定要注意两者的区分,例如矩阵 A = [ 0 3 1 4 2 5 ] A=\left[ \begin{matrix} 0 & 3 \\ 1 & 4 \\ 2 & 5 \end{matrix} \right] A=012345 ,矩阵 A A A 的列向量组为 ( 0 , 1 , 2 ) , ( 3 , 4 , 5 ) (0,1,2), (3,4,5) (0,1,2),(3,4,5) ,列空间 c o l A col A colA 由这 2 2 2 3 3 3 维向量张成,是 2 2 2 维子空间。矩阵 A A A 的行向量组为 [ 0 3 ] , [ 1 4 ] , [ 2 5 ] [0 \quad 3], [1 \quad 4], [2 \quad 5] [03],[14],[25] ,行空间 r o w A row A rowA 由这 3 3 3 2 2 2 维向量张成,是 2 2 2 维空间,行向量组和列向量组是完全不同的向量组。如何用向量集合表示行空间呢?行向量可以看成是列向量的转置,所以矩阵 A T A^{T} AT 的列向量就是矩阵 A A A 的行向量!所以 m m m n n n 列矩阵 A m n A_{mn} Amn 的行空间为: { A T u : u ∈ R m } \{A^{T}\mathbf{u}:u \in R^m\} {ATu:uRm} ,向量 u \mathbf{u} u 取遍 m m m 维空间中所有向量,行空间是 n n n 维子空间,对应也有两种看法,一是矩阵 A T A^T AT 列向量组的线性组合,组合系数是向量 u \mathbf{u} u ;二是函数 A T x A^T\mathbf{x} ATx 的值域,定义域是 m m m 维空间。从转置矩阵角度看,我们认为矩阵 A A A 的行空间由向量 ( 0 , 3 ) , ( 1 , 4 ) , ( 2 , 5 ) (0, 3), (1, 4), (2, 5) (0,3),(1,4),(2,5) 张成,统一看成列向量。

线性空间最重要的属性是空间维度,第一章用向量语言,空间维度定义为生成向量组的极大无关组中向量的数量。本章用矩阵语言,空间维度定义为矩阵的秩,内涵是一样的。

定义 矩阵的秩 等于矩阵列空间的维度,记为 r a n k A rank A rankA

零矩阵的张成空间是原点,所以子空间维度是 0 0 0 ,秩等于 0 0 0 。上面矩阵 A A A 的秩为 r a n k A = 2 rank A = 2 rankA=2 。矩阵的秩等于矩阵的列向量组的极大无关组中向量的数量。

矩阵的秩定义为列空间的维度,那矩阵的行空间的维度和列空间的维度有什么关系呢?表面上看矩阵的行向量组和列向量组是完全不同的向量组,但空间的维度却是相同的!这是线性代数最奇妙的巧合,使线性代数具有优美的对称性,矩阵列向量和行向量具有同等的地位。本章后面证明该结论。

重要性质 矩阵的秩等于列空间的维度,等于行空间的维度,等于列向量组的极大无关组向量的数量,等于行向量组的极大无关组向量的数量, r a n k A = r a n k A T rank A = rank A^T rankA=rankAT

重要性质 矩阵的秩小于行数和列数, r a n k A m n ≤ m i n ( m , n ) rank A_{mn} \leq min(m,n) rankAmnmin(m,n)

根据秩和矩阵列数行数关系,可以把矩阵分为4类。

定义 行列均满秩矩阵 矩阵的秩等于列数,同时也等于行数。

定义 行列均不满秩矩阵 矩阵的秩小于列数,同时也小于行数。

定义 列满秩矩阵 矩阵的秩等于列数;其转置是行满秩矩阵。

定义 行满秩矩阵 矩阵的秩等于行数;其转置是列满秩矩阵。

矩阵的这 4 4 4 类,与第一章中向量组的 4 4 4 类相对应。令矩阵 A m n A_{mn} Amn ,秩 r = r a n k A r=rank A r=rankA

  1. 行列均满秩矩阵有 r = n = m r=n = m r=n=m ,是方阵,列向量组和行向量组均是基,简称满秩矩阵。
  2. 行列均不满秩矩阵有 r < m r < n r < m \quad r < n r<mr<n ,列向量组是相关组,极大无关组是基的真子集;行向量组是相关组,极大无关组是基的真子集。
  3. 列满秩矩阵时, r = n r=n r=n ,必然有 r < m r < m r<m ,因为 m m m 维空间中无关组中向量数量最多只能有 m m m 个 ,所以列满秩矩阵有 r = n < m r=n < m r=n<m ,是瘦长型矩阵,列向量组是无关组,是基的真子集;行向量是 n n n 维向量,行向量组张开空间的维度等于秩 n n n ,其极大无关组是 n n n 维空间基,是相关组。
  4. 行满秩矩阵有 r = m < n r=m < n r=m<n ,矩阵列数多于行数,是扁平型矩阵。行向量组是无关组,是基的真子集;列向量是 m m m 维向量,列向量组张开空间的维度等于秩 m m m ,其极大无关组是 m m m 维空间基,是相关组。

矩阵秩和向量组的关系,读者一定要掌握理解。例如矩阵 A = [ 1 3 2 4 ] A=\left[ \begin{matrix} 1 & 3 \\ 2 & 4 \\ \end{matrix} \right] A=[1234] 是行列均满秩矩阵,列空间维度为 2 2 2 ,行空间维度为 2 2 2 ,秩为 2 2 2 。矩阵 A = [ 1 2 2 4 3 6 ] A=\left[ \begin{matrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{matrix} \right] A=123246 是行列均不满秩矩阵,列空间维度为 1 1 1 ,行空间维度为 1 1 1 ,秩为 1 1 1 。矩阵 A = [ 0 3 1 4 2 5 ] A=\left[ \begin{matrix} 0 & 3 \\ 1 & 4 \\ 2 & 5 \end{matrix} \right] A=012345 是列满秩矩阵,列向量组是无关组,是基的真子集;行向量组是相关组,其子集 ( 0 , 3 ) , ( 1 , 4 ) (0, 3), (1, 4) (0,3),(1,4) 是行空间的基。矩阵 A T A^T AT 是行满秩矩阵。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值