4.9 行列均不满秩方程

4.9 行列均不满秩方程

行列均不满秩方程需综合列满秩方程和行满秩矩阵结果,进行高斯约当消元法,最终矩阵变为单位矩阵、自由矩阵和零矩阵。例如方程

2 x + 4 y + 6 z = 12 4 x + 9 y + 13 z = 36 6 x + 13 y + 19 z = 48 2x + 4y + 6z = 12 \\ 4x + 9y + 13z= 36 \\ 6x + 13y+19z = 48 2x+4y+6z=124x+9y+13z=366x+13y+19z=48

系数矩阵为
A = [ 2 4 6 4 9 13 6 13 19 ] A= \left[ \begin{matrix} 2 & 4 & 6 \\ 4 & 9 & 13 \\ 6 & 13 & 19 \end{matrix} \right] A=246491361319
是行列均不满秩矩阵。

方程有 3 3 3 个未知数 3 3 3 个方程。行列均不满秩方程,如果存在解,则有无穷多解;否则无解。

增广矩阵进行高斯消元法

[ 2 4 6 12 4 9 13 36 6 13 19 48 ] ⇒ [ 2 4 6 12 0 1 1 12 0 1 1 12 ] ⇒ [ 2 4 6 12 0 1 1 12 0 0 0 0 ] \left[ \begin{matrix} 2 & 4 & 6 & 12\\ 4 & 9 & 13 & 36 \\ 6 & 13 & 19 & 48 \end{matrix} \right] \Rightarrow \left[ \begin{matrix} 2 & 4 & 6 & 12\\ 0 & 1 & 1 & 12\\ 0 & 1 & 1 & 12 \end{matrix} \right]\Rightarrow \left[ \begin{matrix} 2 & 4 & 6 & 12\\ 0 & 1 & 1 & 12\\ 0 & 0 & 0 & 0 \end{matrix} \right] 24649136131912364820041161112121220041061012120

方程变为
2 x + 4 y + 6 z = 12 y + z = 12 0 = 0 2x + 4y + 6z = 12 \\ y + z = 12 \\ 0 = 0 2x+4y+6z=12y+z=120=0
注意此时最后一个方程变为 0 x + 0 y + 0 z = 0 0x+0y+0z=0 0x+0y+0z=0 ,是永远成立的平凡方程!有效方程 2 2 2 个,和上面行满秩方程一样,故结论和行满秩方程一样,有无穷多解。

如同列满秩方程,如果第三个方程改变为 6 x + 13 y + 19 z = 49 6x + 13y + 19z = 49 6x+13y+19z=49 ,则高斯消元后变为 0 x + 0 y + 0 z = 1 0x+0y+0z=1 0x+0y+0z=1 ,无解。

行列均不满秩方程 A m n A_{mn} Amn,经过高斯消元法变换后最终为 [ U r r , F r , n − r O m − r , r , O r , n − r ] \left[ \begin{matrix} U_{rr} , F_{r,n-r} \\ \mathbf{O}_{m-r,r},\mathbf{O}_{r,n-r} \end{matrix} \right] [Urr,Fr,nrOmr,r,Or,nr] U r r U_{rr} Urr r r r 阶上三角阵,其对角元素是矩阵 A A A 的主元且均不为零, F F F 是自由矩阵。为什么呢?假设没有列对调操作,一般要两阶段操作,要先变换为 [ U r r , F r , n − r O m − r , r , F r , n − r ′ ] \left[ \begin{matrix} U_{rr} , F_{r,n-r} \\ \mathbf{O}_{m-r,r},F'_{r,n-r} \end{matrix} \right] [Urr,Fr,nrOmr,r,Fr,nr]

总结如下,行列均不满秩方程 A m n A_{mn} Amn,高斯消元法变换为 [ U r r , F r , n − r O m − r , r , O r , n − r ] \left[ \begin{matrix} U_{rr} , F_{r,n-r} \\ \mathbf{O}_{m-r,r},\mathbf{O}_{r,n-r} \end{matrix} \right] [Urr,Fr,nrOmr,r,Or,nr] U r r U_{rr} Urr r r r 阶上三角阵,其对角元素是矩阵 A A A 的主元且均不为零, F F F 是自由矩阵。矩阵乘法表示,即对任意行列均不满秩矩阵 A m n A_{mn} Amn ,存在可逆矩阵 P , Q P,Q P,Q ,使 P A Q = [ U r r , F r , n − r O m − r , r , O r , n − r ] PAQ=\left[ \begin{matrix} U_{rr} , F_{r,n-r} \\ \mathbf{O}_{m-r,r},\mathbf{O}_{r,n-r} \end{matrix} \right] PAQ=[Urr,Fr,nrOmr,r,Or,nr] 成立,进一步对 U r r U_{rr} Urr 进行高斯约当消元,则可表示为,存在可逆矩阵 P , Q P,Q P,Q ,使 P A Q = [ E r r , F r , n − r O m − r , r , O r , n − r ] PAQ=\left[ \begin{matrix} E_{rr} , F_{r,n-r} \\ \mathbf{O}_{m-r,r},\mathbf{O}_{r,n-r} \end{matrix} \right] PAQ=[Err,Fr,nrOmr,r,Or,nr] 成立。

向量 b \mathbf{b} b ,如果 P b Q = [ b ′ 0 ] P\mathbf{b}Q=\left[ \begin{matrix} \mathbf{b'} \\ \mathbf{0} \end{matrix} \right] PbQ=[b0] ,即后 m − r m-r mr 个分量都为 0 0 0 ,则方程 A m n x = b A_{mn}\mathbf{x}=\mathbf{b} Amnx=b 有无穷多解;只要后 m − n m-n mn 个分量有一个不为 0 0 0 ,则方程无解。

前面章节介绍了,行列均不满秩矩阵的行向量组是相关组,列向量组也是相关组,利用高斯消元法可以找到对应的极大无关组,即变换后的矩阵 U r r U_{rr} Urr 对应到矩阵 A A A 的列向量即是列向量组的极大无关组,对应到矩阵 A A A 的行向量即是行向量组的极大无关组。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值