ResNet论文解读
一、提出背景
随着深度学习的大热,使用卷积神经网络来作为图像的特征提取,从开始的浅层神经网络逐渐向深层神经网络发展(ALexNet–VGG–GoogLeNet,网络结构在不断的加深,这是因为更深的网络可以进行更加复杂的特征模式的提取,从而理论上更深的网络可以得到更好的结果。但是通过简单的叠加层的方式来增加网络深度,可能会带来更多的训练错误率,如下图所示,56层的训练错误率要高于22层网络的错误率,这个问题的出现是由于网络加深,可能引来梯度消失/梯度爆炸的问题:
ResNet论文解读
最新推荐文章于 2024-03-29 21:53:26 发布