ResNet论文解读

ResNet论文解读
一、提出背景
随着深度学习的大热,使用卷积神经网络来作为图像的特征提取,从开始的浅层神经网络逐渐向深层神经网络发展(ALexNet–VGG–GoogLeNet,网络结构在不断的加深,这是因为更深的网络可以进行更加复杂的特征模式的提取,从而理论上更深的网络可以得到更好的结果。但是通过简单的叠加层的方式来增加网络深度,可能会带来更多的训练错误率,如下图所示,56层的训练错误率要高于22层网络的错误率,这个问题的出现是由于网络加深,可能引来梯度消失/梯度爆炸的问题:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值