ResNet网络结构详解及代码复现

1. ResNet论文详解

1.1. Introduction

一般网络越深,特征就越丰富,模型效果也就越好。在深度重要的驱动下,出现了2个问题:

  1. 梯度消失和梯度爆炸:

    • 梯度消失:误差梯度<1,当网络层数增多时,最终求的梯度会以指数形式衰减
    • 梯度爆炸:误差梯度>1,当网络层数增多时,最终求的梯度会以指数形式增加
    • 解决方式:
      1. Xavier 初始化、Kaiming 初始化等

      2. Batch Normalization

  2. 退化问题:在适当深度的模型中添加更多的层会导致更高的训练误差,如下图:

在这里插入图片描述

在本文中,我们通过残差结构来解决退化问题。

在这里插入图片描述

原本是通过堆叠非线性层来适合 H ( x ) H(x) H(x),现在是让这些非线性层来适合 F ( x ) F(x) F(x),原始映射被表示为: H ( x ) : = F ( x ) + x H(x):=F(x)+x H(x):=F(x)+x

  • H ( x ) : H(x): H(x): 原本需要学习的映射
  • F ( x ) : F(x): F(x): 现在需要学习的映射
  • x : x: x: 单位映射,可以跳过一层或多层的连接(shortcut connection)

实验表示:

  1. 极深残差网络很容易优化
  2. 很容易获得网络深度带来的准确性的提高

在这里插入图片描述

1.2. Deep Residual Learning

1.2.1 Residual Learning

退化问题表明:很难通过多个非线性层来逼近单位映射,因为如果可以的话,那么更深的模型的训练误差应该不大于更浅层的对应模型。而对应残差网络,如果单位映射为最优的话,求解器可以简单地将多个非线性层地权值置为0从而逼近单位映射。

1.2.2 Identity Mapping by Shortcuts

在本文中,残差块定义如下:

  • x x x F F F的维度一致: y = F ( x , { W i } ) + x y=F(x,\{W_i\})+x y=F(x,{Wi})+x
  • x x x F F F的维度不一致: y = F ( x , { W i } ) + W s x y=F(x,\{W_i\})+W_sx y=F(x,{Wi})+Wsx W s W_s Ws用来匹配维度)

残差函数 F F F是灵活的,主要表现层数的个数和层的类别上

  1. 在本文的实验中涉及的 F F F,它有两层或三层,也可以有更多层,但是如果只有一层,则就类似于线性层: y = W 1 x + x y=W_1x+x y=W1x+x,我们没有观察到任何优势。
  2. 尽管上面公式表示法是全连接层,但它同样适用于卷积层

1.3. Network Architectures

在这里插入图片描述

在这里插入图片描述

在一般网络结构的基础上,插入shortcut connection,将网络变为对应的残差网络。

当输入和输出的维数相同时:对应于上图的实线shortcut connection,处理方式:

  • 直接使用单位映射

当输入和输出的维数不相同时:对应于上图的虚线shortcut connection,处理方式:

  • shortcut connection仍然使用单位映射,增加维数用0填充,此方法不引入额外的参数
  • 使用1x1卷积来匹配维度,文中称为projection shortcut

当跨越两种尺寸的特征图时,执行步幅为2的。有上表黄色部分可知。

1.4. Experiments

1.4.1 Residual Networks VS. Plain Networks

在这里插入图片描述

在这里插入图片描述

Plain Networks

上图表示:34层网络比18层网络具有更高的验证误差,尽管18层网络的解空间是34层网络的子空间,但在整个训练过程中,34层网络的训练误差都比较大,这说明了退化问题

我们认为这种优化困难不可能是梯度消失引起的,因为这些网络都使用了BN进行训练,保证前向传播的信号具有非零方差。我们还验证了反向传播的梯度在BN上表现出健康的范数。所以向前和向后的信号都不会消失。

Residual Networks

从图4和表2可知:

  1. 34层的残差网络比18层残差网络有着相当低的训练误差,并可推广到验证数据,这说明退化问题得到很好的解决,这说明了残差网络在极深网络的有效性
  2. 通过比较18层网络和18层残差网络,发现残差网络收敛的更快

1.4.2 Identity VS. Projection Shortcuts

在这里插入图片描述

在表3中,我们比较了3个选项(projection:在文中指利用1x1卷积来进行改变维度)

  1. A:用0填充以增加维度
  2. Bprojection shortcuts用于增加维度,其他shortcuts为单位映射
  3. C:所有shortcuts均为projection

由表3可知:

  • B略优于AA中的0填充的维度没有进行残差学习
  • C略优于B:多个projection引入了额外的参数
  • ABC的细小差异表明:projection对于解决退化问题不是必须的,因此在本文的其余部分,我们不使用C以减少内存/时间复杂度和模型的规模,使用B

1.4.3 Deeper Bottleneck Architectures

在这里插入图片描述

1x1卷积用于升维或降维,可以减少网络的参数

  • 上图左:256x3x3x256+256x3x3x256=1179648
  • 上图右:256x1x1x64+64x3x3x64+64x1x1x256=69632

故在更深的残差网络中,使用上图右的结构,可以大大减少网络的参数,减小模型的规模

2. 基于Pytorch代码复现

2.1 模型搭建

import torch.nn as nn
import torch
from torchsummary import summary
import torchvision.models as models


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_channel, out_channel, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)
        self.relu = nn.ReLU(inplace=True)

        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)
        self.downsample = downsample

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, in_channel, out_channel, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=1, stride=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)

        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn2 = nn.Conv2d(out_channel)

        self.conv3 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel*self.expansion, kernel_size=1, stride=1, bias=False)
        self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out += identity
        out = self.relu(out)

        return out


class ResNet(nn.Module):
    def __init__(self, block, block_num, num_classes=1000, include_top=True):
        super(ResNet, self).__init__()
        self.include_top = include_top
        self.in_channel = 64

        self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(block, 64, block_num[0])
        self.layer2 = self._make_layer(block, 128, block_num[1], stride=2)
        self.layer3 = self._make_layer(block, 256, block_num[2], stride=2)
        self.layer4 = self._make_layer(block, 512, block_num[3], stride=2)

        if self.include_top:
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
            self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

    def _make_layer(self, block, channel, block_num, stride=1):
        downsample = None

        if stride != 1 or self.in_channel != channel * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel*block.expansion)
            )

        layers = []

        layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride))
        self.in_channel = channel * block.expansion
        for _ in range(1, block_num):
            layers.append(block(self.in_channel, channel))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        if self.include_top:
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)

        return x


def resnet34(num_classes=1000, include_top=True):
    return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def resnet101(num_classes=1000, include_top=True):
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)


def read_resnet34():
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = models.resnet34(pretrained=True)
    model.to(device)
    print(model)
    summary(model, input_size=(3, 224, 224))


def get_resnet34(flag, num_classes):
    if flag:
        net = models.resnet34(pretrained=True)
        num_input = net.fc.in_features
        net.fc = nn.Linear(num_input, num_classes)
    else:
        net = resnet34(num_classes)

    return net

2.2 训练结果如下

  1. 训练数据集与验证集大小以及训练参数
Using 3306 images for training, 364 images for validation
Using cuda GeForce RTX 2060 device for training
lr: 0.0001
batch_size: 16
  1. 使用自己定义的网络训练结果

[epoch 1/10] train_loss: 1.309 val_acc: 0.555
[epoch 2/10] train_loss: 1.146 val_acc: 0.604
[epoch 3/10] train_loss: 1.029 val_acc: 0.643
[epoch 4/10] train_loss: 0.935 val_acc: 0.695
[epoch 5/10] train_loss: 0.919 val_acc: 0.615
[epoch 6/10] train_loss: 0.860 val_acc: 0.723
[epoch 7/10] train_loss: 0.841 val_acc: 0.690
[epoch 8/10] train_loss: 0.819 val_acc: 0.725
[epoch 9/10] train_loss: 0.800 val_acc: 0.745
[epoch 10/10] train_loss: 0.783 val_acc: 0.725
Best acc: 0.745
Finished Training
Train 耗时为:281.2s
  1. 使用预训练模型参数训练结果
[epoch 1/10] train_loss: 0.492 val_acc: 0.896
[epoch 2/10] train_loss: 0.327 val_acc: 0.896
[epoch 3/10] train_loss: 0.285 val_acc: 0.909
[epoch 4/10] train_loss: 0.273 val_acc: 0.904
[epoch 5/10] train_loss: 0.205 val_acc: 0.901
[epoch 6/10] train_loss: 0.245 val_acc: 0.898
[epoch 7/10] train_loss: 0.200 val_acc: 0.923
[epoch 8/10] train_loss: 0.196 val_acc: 0.923
[epoch 9/10] train_loss: 0.179 val_acc: 0.929
[epoch 10/10] train_loss: 0.173 val_acc: 0.926
Best acc: 0.929
Finished Training
Train 耗时为:281.3s

上一篇:GoogLeNet
下一篇:DenseNet
完整代码

  • 9
    点赞
  • 98
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
ResNet18的主要原理是通过添加残差连接(skip connection)来构建深层神经网络。残差连接是将输入直接加到网络的输出中,从而使得网络可以学习到输入与输出的差异,从而更好地拟合数据。 在代码实现方面,可以使用PyTorch框架来实现ResNet18。以下是ResNet18的简单代码实现: ```python import torch.nn as nn import torch.nn.functional as F class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != self.expansion * out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * out_channels) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self.make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self.make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self.make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self.make_layer(block, 512, num_blocks[3], stride=2) self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) def make_layer(self, block, out_channels, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avg_pool(out) out = out.view(out.size(0), -1) out = self.fc(out) return out def ResNet18(): return ResNet(BasicBlock, [2, 2, 2, 2]) ``` 上述代码中,首先定义了一个BasicBlock类,用于构建ResNet18中的基本块。然后定义了一个ResNet类,该类包含了多个BasicBlock块,并且包括了一个全连接层用于分类。最后,定义了一个ResNet18函数,用于构建一个ResNet18模型。 要复现ResNet18模型,可以使用以上代码,并对数据集进行适当的预处理和训练。具体实现可以参考PyTorch官方文档和相关教程。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值