手写数字彩色图像识别-Keras实现(基于R语言)

该文介绍了如何利用Keras和R语言处理并预测手写数字图像。首先,从num文件夹加载50张彩色数字图像,将其转化为灰度、调整尺寸并进行预处理。接着,使用MNIST数据集训练模型,通过深度学习构建多层感知器(MLP),并进行30轮训练。预测结果显示,部分数字如8、9和6预测错误较多。文章最后展示了预测错误的图像实例。
摘要由CSDN通过智能技术生成

本文摘自《Keras深度学习:入门、实战及进阶》一书。
本小节我们将利用MNIST数据集的训练数据训练模型,MNIST数据集的测试数据评估模型,再利用训练好的模型对本地的50个手写数字图像进行预测,查看预测效果。
在num文件夹中已经保存了50张0~9的彩色数字图像
在这里插入图片描述
使用EBImage包的readImage()函数将num文件夹中的所有数字图像读取到R中。

> library(keras)
> library(EBImage)
> # 图像数据读取
> setwd('../num') # 设置num文件夹为默认路径
> temp <- paste(1:50,'png',sep = '.') 
> mypic <- list()
> for (i in 1:length(temp)) {mypic[[i]] <- readImage(temp[[i]])}

利用for循环语句,已经将50张数字图像读入到R中。利用plot()函数查看读取的数字图像。

> # 绘制数字图像
> par(mfrow=c(10,5))
> for(i in 1:50) plot(mypic[[i]])
> par(mfrow=c(1,1))

在这里插入图片描述
在对数据图像处理前,让我们先查看各个图像的维度大小。以下程序将每张图像的实际值和三个维度的实际大小保存到size对象中,并查看前六张图像的数据情况。

> # 查看各图像的维度大小
> size <- data.frame(pic = 1:50,
+                num = rep(0:9,each = 5),
+                dim1 = sapply(mypic,dim)[1,],
+                dim2 = sapply(mypic,dim)[2,],
+                dim3 = sapply(mypic,dim)[3,])
> head(size)
  pic num dim1 dim2 dim3
1   1   0  122  106    3
2   2   0  119  106    3
3   3   0  126  100    3
4   4   0  125  115    3
5   5   0  124  118    3
6   6   1  100  108    3

数据框size中的dim1、dim2、dim3分别对应图像的像素宽度、像素高度和颜色通道。因为dim3列的值均为3,所以这些数字图像均为彩色图像,需利用colorMode()函数将它们转变为灰色图像。因为各图像的dim1和dim2值不相同,故这些图像大小不一致,需利用resize()函数进行处理。

> # 图像处理
> for (i in 1:length(temp)) {colorMode(mypic[[i]]) <- Grayscale} # 转换为灰色图像
> for (i in 1:length(temp)) {mypic[[i]] <- 1-mypic[[i]]}  # 转换为背景色为黑色,数字为白色的图像
> for (i in 1:length(temp)) {mypic[[i]] <- resize(mypic[[i]], 28, 28)} # 将图像转换为28*28大小
> for (i in 1:length(temp)) {mypic[[i]] <- array_reshape(mypic[[i]], c(28,28,3))} # 将image转变为list
> new <- NULL
> for (i in 1:length(temp)) {new <- rbind(new, mypic[[i]])}
> newx <- new[,1:784] # 得到50*784的X二维矩阵
> newy <- size$num    # 得到每个图像的实际数字

最后,再次使用plot()函数查看经过处理后的数字图像。

> # 绘制处理后的数字图像
> par(mfrow=c(5,10))
> for(i in 1:50) plot(as.raster(array_reshape(newx[i,],c(28,28))))
> par(mfrow=c(1,1))

在这里插入图片描述
以下是MNIST数据预处理代码。

> # 加载MNIST数据集
> mnist <- dataset_mnist()
> trainx <- mnist$train$x
> trainy <- mnist$train$y
> testx <- mnist$test$x
> testy <- mnist$test$y
> # 改变数据形状和大小
> trainx <- array_reshape(trainx, c(nrow(trainx), 784))
> testx <- array_reshape(testx, c(nrow(testx), 784))
> trainx <- trainx / 255
> testx <- testx /255
> # 独热编码
> trainy <- to_categorical(trainy, 10)
> testy <- to_categorical(testy, 10)

以下是深度学习建模代码。

> # 构建MLP模型函数
> build_model <- function() {
+   model <- keras_model_sequential() %>%
+     layer_dense(units = 512, activation = 'relu', input_shape = c(784)) %>% 
+     layer_dropout(rate = 0.4) %>% 
+     layer_dense(units= 256, activation = 'relu') %>% 
+     layer_dropout(rate = 0.3) %>% 
+     layer_dense(units = 10, activation = 'softmax')
+   # 编译
+   model %>% compile(
+     loss = 'categorical_crossentropy',
+     optimizer = optimizer_rmsprop(),
+     metrics = 'accuracy')
+   model
+ }

以下是训练模型代码。

> model <- build_model()
> history <- model %>% fit(
+  trainx,
+  trainy,
+  epochs = 30,
+  batch_size = 32,
+  validation_split = 0.2)
> plot(history)

在这里插入图片描述
以下是对彩色数据进行预测。

> # 模型预测
> pred <- model %>% predict_classes(newx)
> t <- table(Actual = newy,Predicted = pred)
> t
Actual 0 1 2 3 4 5 6 7 8 9
     0 4 0 1 0 0 0 0 0 0 0
     1 0 5 0 0 0 0 0 0 0 0
     2 0 0 5 0 0 0 0 0 0 0
     3 0 0 1 4 0 0 0 0 0 0
     4 0 1 1 0 2 0 0 0 0 1
     5 0 0 0 0 0 4 0 0 1 0
     6 0 0 0 0 0 4 1 0 0 0
     7 0 0 1 1 0 0 0 2 1 0
     8 0 0 3 1 0 0 0 0 0 1
     9 0 0 0 1 1 1 2 0 0 0

从混淆矩阵可知,除了1、2这两种数字图像全部预测正确外,其他数字图像均有预测结果与实际值不一致情况。
通过以下程序代码绘制预测与实际不一致的数字图像。

> ind <- which(newy!=pred) # 提取预测与实际不一致的下标集
> par(mfrow=c(4,6))
> for(i in ind){
+   plot(as.raster(array_reshape(newx[i,],c(28,28))))
+   title(paste('Actual=',newy[i],'Predicted=',pred[i]))
+ }
> par(mfrow=c(1,1))

在这里插入图片描述
从可知,数字8、9全部预测错误,数字6有4个预测错误,数据4、7各有3个预测错误,数字0、3、6分别有1个预测错误。
在这里插入图片描述
在这里插入图片描述

好的,下面是基于TensorFlow(Keras)搭建的VGG16卷积神经网络,实现手写数字识别的代码: ```python import tensorflow as tf from tensorflow.keras import layers, models, datasets, utils # 加载数据集 (train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data() # 数据预处理 train_images = train_images.reshape((60000, 28, 28, 1)) / 255.0 test_images = test_images.reshape((10000, 28, 28, 1)) / 255.0 # 将标签进行one-hot编码 train_labels = utils.to_categorical(train_labels) test_labels = utils.to_categorical(test_labels) # 构建VGG16模型 model = models.Sequential() model.add(layers.Conv2D(64, (3, 3), activation='relu', padding='same', input_shape=(28, 28, 1))) model.add(layers.Conv2D(64, (3, 3), activation='relu', padding='same')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(128, (3, 3), activation='relu', padding='same')) model.add(layers.Conv2D(128, (3, 3), activation='relu', padding='same')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(256, (3, 3), activation='relu', padding='same')) model.add(layers.Conv2D(256, (3, 3), activation='relu', padding='same')) model.add(layers.Conv2D(256, (3, 3), activation='relu', padding='same')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(512, (3, 3), activation='relu', padding='same')) model.add(layers.Conv2D(512, (3, 3), activation='relu', padding='same')) model.add(layers.Conv2D(512, (3, 3), activation='relu', padding='same')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(512, (3, 3), activation='relu', padding='same')) model.add(layers.Conv2D(512, (3, 3), activation='relu', padding='same')) model.add(layers.Conv2D(512, (3, 3), activation='relu', padding='same')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Flatten()) model.add(layers.Dense(4096, activation='relu')) model.add(layers.Dense(4096, activation='relu')) model.add(layers.Dense(10, activation='softmax')) # 模型编译 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 模型训练 model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_data=(test_images, test_labels)) # 模型评估 test_loss, test_acc = model.evaluate(test_images, test_labels) print('Test accuracy:', test_acc) ``` 需要注意的是,这个模型的训练需要较长时间,可以在Colab等云环境中进行训练。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jiabiao1602

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值