隐马尔科夫模型 (HMM) 中的三个主要问题及相关算法 (待续)

本文介绍了隐马尔科夫模型(HMM)的评价问题,包括前向算法,以及解码问题的维特比算法。HMM广泛应用于语音识别和词性标注等领域。文章详细阐述了HMM的模型定义,并逐步解析了计算观测序列似然比和寻找最可能状态序列的方法。
摘要由CSDN通过智能技术生成

隐马尔科夫模型 (HMM) 中的三个主要问题及相关算法

终于赶完了所有的due,现在可以坐下来整理一下隐马尔科夫模型 (HMM) 了。HMM是马尔科夫模型的推广,其同时对观测到的事件 (observed event) 和其背后的隐含状态 (hidden event) 建模,在Speech Recognition,Part-of-speech Tagging等问题上均有应用。本文针对HMM中的三个主要问题:评价(Evaluation or Likelihood Computation)、解码 (Decoding) 和训练 (Training) 以及其对应的算法给以详细的介绍。


0. HMM的定义

下面让我们首先给出HMM的定义,一个HMM主要由以下几个部分组成

  • N 个状态,我们用 Q=q1q2qN 来表示
  • 转移概率矩阵 An×n={ aij},i,j{ 1,2,,N} ,其中 aij 表示从状态 i 转移到状态 j 的概率,因此有 Ni=1aij=1,i
  • 包含T个观测结果的序列,用 O=o1o2oT 来表示
  • 一系列生成概率 (emission probability),记作 B={ bi(ot)},i{ 1,2,,N},t{ 1,2,,T} ,表示状态 i 产生观测结果 ot
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值