隐式半马尔可夫模型简述——Hidden semi-Markov Model: My superficial review

本文介绍隐式半马尔可夫模型(HSMM)的基本概念与使用,以及一些个人理解。读者要求有一定隐式马尔可夫模型(HMM)基础。文中采用的符号系统取自附录2。

从HMM到HSMM

有关隐式马尔可夫模型模型的由来,此处不做过多阐述,只做简单介绍。详细内容读者可参考此文
给定一个观测序列 o = { o 1 , o 2 , … , o T } o = \{o_{1}, o_{2}, \dots, o_{T}\} o={ o1,o2,,oT},我们假设该观测序列采样自某个不可直接观测的状态序列 s = { s 1 , s 2 , … , s T } s = \{s_{1},s_{2},\dots,s_{T}\} s={ s1,s2,,sT},且 t t t时刻的状态仅取决于 t − 1 t-1 t1时刻的状态,那么我们认为采样的模型属于隐式马尔可夫模型(Hidden Markov Model, HMM)。一个典型HMM的模型参数为: λ ≜ { A , B , π } \lambda\triangleq\{ A, B, \pi \} λ{ A,B,π} 其中

  • A A A状态转移概率矩阵(Transition probabilities): a i j = P ( s t = S j ∣ s t − 1 = S i ) a_{ij} = P(s_{t} = S_{j} | s_{t-1} = S_{i}) aij=P(st=Sjst1=Si)
  • B B B观测概率矩阵(Observation probabilities): b j ( k ) = P ( o t = O k ∣ s t = S j ) b_{j}(k) = P(o_{t} = O_{k} | s_{t} = S_{j} ) bj(k)=P(ot=Okst=Sj)
  • π \pi π初始状态概率向量(Initial state probabilities): π j = P ( s 0 = S j ) \pi_{j} = P(s_{0} = S_{j}) πj=P(s0=Sj)

一般探讨HMM的使用指的是探讨三个问题:

  1. 评价:给定观测序列,评估该序列满足某个HMM的概率。典型的做法是前向、后向算法。
  2. 解码:给定观测序列和一个HMM,找到该观测序列对应的状态序列。通常采用维特比算法。
  3. 训练:给定观测序列,估计对应的HMM的参数。通常采用EM算法。

隐式马尔可夫模型的可用于建模空间、时间上的不确定性。空间上的不确定性由状态间的转移概率建模,时间上的不确定性则与自身转移概率有关( a i i a_{ii} aii)。利用HMM每次预测下一个采样时刻的状态都仅考虑系统当前时刻的状态。然而,一些实际问题中,状态之间的转移并不在一个采样周期内发生。也就是说,状态会保持一段时间。就好比一个智能体从A地依次运动到B、C、D,由于每个地方大小不同,智能体在每个地方运动的时间长短也不同。这种数据的建模就要用到隐式半马尔可夫模型模型(Hidden semi-Markov Model, HSMM),如下图所示:
HSMM
每个状态都有一个时长(Duration),且时长不固定。

HSMM概述

HSMM是HMM的扩展,它允许每个状态具有一个可变的时长(variable duration, d d d)。因此,HSMM可以用以建模时间上的不确定性。HSMM与HMM最重要的区别在于HMM每个状态产生一个观测值,而HSMM每个状态产生一系列观测值。
对于一个HSMM,状态的转移并非 s t → s t + 1 s_{t} \to s_{t+1} stst+1,而是 ( s i , d i ) → ( s i + 1 , d i + 1 ) (s_{i},d_{i}) \to (s_{i+1}, d_{i+1}) (si,di)(si+1,di+1)。令状态 i i i 到状态 j j j 的转移概率为: a ( i , d ′ ) ( j , d ) ≜ P [ s [ t + 1 : t + d ] = S j ∣ s [ t − d ′ + 1 , t ] = S i ] s.t.  ∑ j ∈ S ∖ { i } ∑ d ∈ D a ( i , d ′ ) ( j , d ) = 1 a ( i , d ′ ) ( i , d ) = 0 \begin{aligned} &a_{(i,d')(j,d)} \triangleq P[s_{[t+1:t+d]} = S_{j} | s_{[t-d'+1,t]} = S_{i}] \\ \text{s.t. } &\sum_{j\in\mathcal{S}\setminus\{i\}}\sum_{d\in\mathcal{D}}a_{(i,d')(j,d)} = 1 \\ &a_{(i,d')(i,d)} = 0 \end{aligned} s.t. a(i,d)(j,d)P[s[t+1:t+d]=Sjs[td+1,t]=Si]jS{ i}dDa(i,d)(j,d)=1a(i,d)(i,d)=0 从上式可以看出:

  • 使用HSMM时我们不考虑状态内部转移概率(self-transition probabilities),即将矩阵 A A A中对角线元素全部置零。
  • 状态之间的转移发生在采样时刻 t t t ,此时前一个状态结束,后一个状态开启。
  • 后一个状态及其时长,除了与前一个状态本身有关,还与前一个状态的时长有关。举个例子,一个智能体从A地运动到B地,由于A、B两地交界是线而非点,智能体沿着不同的方向运动有可能在两地停留的时间不同。

HSMM的观测概率表示为: b j , d ( o t + 1 : t + d ) ≜ P [ o t + 1 : t +

  • 10
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值