pandas学习笔记-DataFrame(1)

DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(公用同一个索引)。跟其他类型的数据结构相比,DataFrame中面向行和面向列的操作基本上是平衡的。其实,DataFrame中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构)。

构建DataFrame的办法有很多,最常用的一种是直接传入一个由等长列表或Numpy数组组成的字典。

data = {'state':['Ohio','Ohio','Ohio','Nevada','Nevada'],
        'year':[2000,2001,2002,2001,2002],
        'pop':[1.5,1.7,3.6,2.4,2.9]}
frame = pd.DataFrame(data)
print frame

结果DataFrame会自动加上索引(跟Series一样),且全部列会被有序排列:

结果
   pop   state  year
0  1.5    Ohio  2000
1  1.7    Ohio  2001
2  3.6    Ohio  2002
3  2.4  Nevada  2001
4  2.9  Nevada  2002

如果指定了列序列,则DataFrame的列就会按照指定顺序进行排列:

frame = pd.DataFrame(data,columns=['year','state','pop'])
print frame
输出结果
   year   state  pop
0  2000    Ohio  1.5
1  2001    Ohio  1.7
2  2002    Ohio  3.6
3  2001  Nevada  2.4
4  2002  Nevada  2.9

跟Series一样,如果传入的列在数据中找不到,就会产生NA值:

frame2 = pd.DataFrame(data,
                      columns=['year','state','pop','debt'],
                      index=['one','two','three','four','five'])
print frame2
结果
       year   state  pop debt
one    2000    Ohio  1.5  NaN
two    2001    Ohio  1.7  NaN
three  2002    Ohio  3.6  NaN
four   2001  Nevada  2.4  NaN
five   2002  Nevada  2.9  NaN

通过类似字典标记的方式或属性的方式,可以将DataFrame的列获取为一个Series:

print frame2['state']
输出结果
one        Ohio
two        Ohio
three      Ohio
four     Nevada
five     Nevada
Name: state, dtype: object
print frame2.year
输出结果
one      2000
two      2001
three    2002
four     2001
five     2002
Name: year, dtype: int64

注意,返回的Series拥有原DataFrame相同的索引,且其name属性也已经被相应地设置好了。行也可以通过位置或名称的方式进行获取,比如用索引字段ix

print frame2.ix['three']
year     2002
state    Ohio
pop       3.6
debt      NaN
Name: three, dtype: object

列可以通过赋值的方式进行修改。例如,我们可以给那个空的“debt”列赋上一个标量值或一组值:

frame2['debt']=16.5
print frame2
结果
       year   state  pop  debt
one    2000    Ohio  1.5  16.5
two    2001    Ohio  1.7  16.5
three  2002    Ohio  3.6  16.5
four   2001  Nevada  2.4  16.5
five   2002  Nevada  2.9  16.5
frame2['debt']=np.arange(5)
print frame2
结果
       year   state  pop  debt
one    2000    Ohio  1.5     0
two    2001    Ohio  1.7     1
three  2002    Ohio  3.6     2
four   2001  Nevada  2.4     3
five   2002  Nevada  2.9     4

将列表或数组赋值给某个列时,其长度必须跟DataFrame的长度相匹配。如果赋值的是一个Series,就会精确匹配DataFrame的索引,所有的空位都将被填上缺失值:

val = pd.Series([-1.2,-1.5,-1.7],index=['two','four','five'])
frame2['debt'] = val
print frame2
输出结果
       year   state  pop  debt
one    2000    Ohio  1.5   NaN
two    2001    Ohio  1.7  -1.2
three  2002    Ohio  3.6   NaN
four   2001  Nevada  2.4  -1.5
five   2002  Nevada  2.9  -1.7

为不存在的列赋值会创建出一个新列。关键字del用于删除列。

frame2['eastern'] = frame2.state == 'Ohio'
print frame2
输出结果
       year   state  pop  debt eastern
one    2000    Ohio  1.5   NaN    True
two    2001    Ohio  1.7  -1.2    True
three  2002    Ohio  3.6   NaN    True
four   2001  Nevada  2.4  -1.5   False
five   2002  Nevada  2.9  -1.7   False
del frame2['eastern']
print frame2.columns
输出结果
Index([u'year', u'state', u'pop', u'debt'], dtype='object')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值