TensorFlow优化 --- softmax算法与损失函数的综合应用

1.softmax算法
(1).softmax的定义
      softmax算法的只要应用就是多分类,而且是互斥的,即只能属于其中的一个类。与sigmoid类的激活函数不同的是,一般的激活函数只能分两类,所以可以理解成softmax是Sigmoid类的激活函数的扩展
      softmax伴随的分类标签都为one-hot编码,在softmax时需要将目标分成几类,就在最后这层放几个节点。
(2).TensorFlow中的softmax

# 计算softmax
tf.nn.softmax(logits, name=None)
# 对softmax求对数
tf.nn.log_softmax(logits, name=None)

2.损失函数
损失函数的作用是用来描述模型预测值与真实值的差距大小。一般有两种常见的算法,均值平方差(MSE)和交叉熵
(1).均值平方差
      均值平方差在神经网络中表达预测值与真实值之间的差异。在数理统计中,均方误差是指参数估计值与参数真值之差平方的期望值。公式为:
                   MSE=1nn<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值