1.softmax算法
(1).softmax的定义
softmax算法的只要应用就是多分类,而且是互斥的,即只能属于其中的一个类。与sigmoid类的激活函数不同的是,一般的激活函数只能分两类,所以可以理解成softmax是Sigmoid类的激活函数的扩展
softmax伴随的分类标签都为one-hot编码,在softmax时需要将目标分成几类,就在最后这层放几个节点。
(2).TensorFlow中的softmax
# 计算softmax
tf.nn.softmax(logits, name=None)
# 对softmax求对数
tf.nn.log_softmax(logits, name=None)
2.损失函数
损失函数的作用是用来描述模型预测值与真实值的差距大小。一般有两种常见的算法,均值平方差(MSE)和交叉熵
(1).均值平方差
均值平方差在神经网络中表达预测值与真实值之间的差异。在数理统计中,均方误差是指参数估计值与参数真值之差平方的期望值。公式为:
MSE=1n∑n<