1 前面的代码都没有关闭Session,所以:可以采用
with tf.Session() as sess:
这样的方式,自动关闭Session,或者采用手动关闭
2 训练出来的模型没有保存,这样一关闭模型就木有了。
3 一般我们都是按照epoch来设定训练次数的。
4 修改loss function和优化器
所以最终修改的代码:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#mnist已经作为官方的例子,做好了数据下载,分割,转浮点等一系列工作,源码在tensorflow源码中都可以找到
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# 配置每个 GPU 上占用的内存的比例
# 没有GPU直接sess = tf.Session()
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
#每个批次的大小
batch_size = 20
#定义训练轮数据
train_epoch = 10
#定义每n轮输出一次
test_epoch_n = 1
#计算一共有多少批次
n_batch = mnist.train.num_examples // batch_size
print("batch_size="+str(batch_size)+"n_batch="+str(n_batch))
#占位符,定义了输入,输出
x = tf.placeholder(tf.float32,[None, 784])
y_ = tf.placeholder(tf.float32,[None, 10])
#权重和偏置,使用0初始化
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
#这里定义的网络结构
y = tf.nn.softmax(tf.matmul(x,W) + b)
#损失函数是交叉熵
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_,logits=y))
#训练方法:SGD
#train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
train_step = tf.train.AdamOptimizer(1e-2).minimize(cross_entropy)
#初始化sess中所有变量
init = tf.global_variables_initializer()
sess.run(init)
MaxACC = 0#最好的ACC
saver = tf.train.Saver()
#训练n个epoch
for epoch in range(train_epoch):
for batch in range(n_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict = {x: batch_xs, y_: batch_ys})
if(0==(epoch%test_epoch_n)):#每若干次预测test一次
#计算test集的准确率
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
now_acc=sess.run(accuracy, feed_dict={x:mnist.test.images, y_: mnist.test.labels})
print('epoch=',epoch,'ACC=',now_acc)
if(now_acc>MaxACC):
MaxACC = now_acc
saver.save(sess, "Model/ModelSoftmax.ckpt")
print('Save model! Now ACC=',MaxACC)
#计算最终test集的准确率
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print('Train OK! epoch=',epoch,'ACC=',sess.run(accuracy, feed_dict={x:mnist.test.images, y_: mnist.test.labels}))
#关闭sess
sess.close()
#读取模型
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95)
with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
saver.restore(sess, "./Model/ModelSoftmax.ckpt") # 注意此处路径前添加"./"
print('Load Model OK!')
print('ACC=',sess.run(accuracy, feed_dict={x:mnist.test.images, y_: mnist.test.labels}))
这样可以很方便修改batch_size、训练轮数,并且可以保存模型