基于互质阵的DOA估计

本文详细介绍了互质阵的基本概念,包括其定义、性质,以及如何通过扩展互质阵增加信号模型的自由度。在DOA估计方面,探讨了直接使用原始数据的Direct-MUSIC方法以及相关域数据处理方法,揭示了互质阵在消除估计模糊效应方面的优势。此外,还讨论了差合阵列与和合阵列在DOF上的比较。
摘要由CSDN通过智能技术生成

目录

1. 互质阵基本概念

1.1 互质阵的定义

1.2 互质阵的性质

2 扩展互质阵信号模型

3 扩展互质阵DOA估计

3.1 原始数据直接处理——Direct-MUSIC

3.2 相关域数据处理——向量化协方差矩阵+虚拟差合阵元过程

参考文献


1. 互质阵基本概念

1.1 互质阵的定义

       互质阵概念是由青年科学家Piya Pal于2010年提出的[R1]-[R3],其相比嵌套阵可以克服互耦效应对DOA估计精度的影响。如图1(a_{1})所示,标准互质阵由一对具有互质性的MN元子阵构成,其中M元子阵的阵元间距为NdN元子阵的阵元间距为Mdd=λ/2。两子阵共线放置,除了位置0处的阵元重叠,其余阵元均不重叠。图1(b_{1})是在图1()的基础上扩展得到的,称为扩展互质阵。扩展互质阵是由标准互质阵中某一子阵的阵元数目倍增后得到,通常选择阵元数目少的子阵进行阵列结构扩展

      标准互质阵物理阵元所在位置集合及其差合阵列位置集合S_{a}为: 

   (1)

      扩展互质阵物理阵元所在位置集合及其差合阵列位置集合D_{a}为:

                                        (2)

(a2) (4,3)子阵元对的标准互质阵 (b2) (4,6)子阵元对的扩展互质阵

       相比标准互质阵列,扩展互质阵列下的差合阵列能获得更多的连续阵元。须注意互质阵列所对应的差合阵列是存在孔洞(holes)的非均匀线阵(non-uniform linear array with holes),而二级嵌套阵所对应的差合阵列是均匀线阵(the filled ULA)。

       下面我们将分析标准和扩展互质阵具有的优良性质。


1.2 互质阵的性质

(1) 的自由度(Degree of Freedom, DOF)高于MN;

      Proof: k1和k2的组合方式一共有MN种,即证无重复元素。假设存在,那么,所以假设不存在,无重复元素。

(2)

        Proof: 由扩展欧几里得算法可知:已知整数ab,可以求得ab的最大公约数(Greatest Common Division, gcd)的同时,找到整数xy使得ax+by=gcd(a,b),其中有一个可能是是负数。因此

(3) 扩展互质阵对应的差合阵列可形成的filled ULA with hole-free范围:

a.

b.

        Proof: (2) 倘若,必然存在,使得。因此通过对p的合理选择,存在,其中。又因,由此可推导出

(4) 不管是标准还是扩展互质阵,其差合阵列有冗余阵元(redundancy)和孔洞(hole);

(5) 相同物理阵元下,嵌套阵比互质阵的DOF多;

       Proof: 中当k1=0或者k2=0既是cross-difference情况,也是self-difference情况,即coprime中self-difference全部包含于中cross-difference。而在嵌套阵中,cross-difference为,当m=n=1时会同时出现在self-difference和cross-difference中,其余的self-difference不会全部出现在cross-difference里。因此嵌套阵比互质阵的DOF多。

(6) 相同物理阵元下,差合阵列比和合阵列的DOF多;

       Proof: 对比和合阵列(共址MIMO)和差合阵列(被动接收),显然差合阵列比和合阵列的DOF多。


2 扩展互质阵信号模型

                                                             (3)


3 扩展互质阵DOA估计

      协方差矩阵Rx表示为:

                                                          (4)

3.1 原始数据直接处理——Direct-MUSIC

值得注意的是直接对稀疏阵下的协方差矩阵Rx进行DOA估计,则测向结果会存在模糊现象。然而,文献[R4, R5]已证明,互质阵之特殊阵列结构可有效消除上述直接数据域中的DOA估计模糊效应,嵌套阵信号处理中无类似结论。

3.2 相关域数据处理——向量化协方差矩阵+虚拟差合阵元过程

       此时若2M+N-1<KA为fat matrix,此时的信号模型是欠定的。向量化可得:

                                                  (5)


参考文献

[R1] P. P. Vaidyanathan and P. Pal, "Sparse sensing with coprime arrays," 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, 2010, pp. 1405-1409.

[R2] P. Pal and P. P. Vaidyanathan, "Coprime sampling and the music algorithm," 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), 2011, pp. 289-294.

[R3] P. P. Vaidyanathan and P. Pal, "Sparse Sensing With Co-Prime Samplers and Arrays," in IEEE Transactions on Signal Processing, vol. 59, no. 2, pp. 573-586, Feb. 2011.

[R4] P. P. Vaidyanathan and P. Pal, "Direct-MUSIC on sparse arrays," 2012 International Conference on Signal Processing and Communications (SPCOM), 2012, pp. 1-5.

[R5] P. P. Vaidyanathan and P. Pal, "Why does direct-MUSIC on sparse-arrays work?," 2013 Asilomar Conference on Signals, Systems and Computers, 2013, pp. 2007-2011.

评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值