目录
3.2 相关域数据处理——向量化协方差矩阵+虚拟差合阵元过程
1. 互质阵基本概念
1.1 互质阵的定义
互质阵概念是由青年科学家Piya Pal于2010年提出的[R1]-[R3],其相比嵌套阵可以克服互耦效应对DOA估计精度的影响。如图1()所示,标准互质阵由一对具有互质性的M和N元子阵构成,其中M元子阵的阵元间距为Nd,N元子阵的阵元间距为Md,d=λ/2。两子阵共线放置,除了位置0处的阵元重叠,其余阵元均不重叠。图1()是在图1()的基础上扩展得到的,称为扩展互质阵。扩展互质阵是由标准互质阵中某一子阵的阵元数目倍增后得到,通常选择阵元数目少的子阵进行阵列结构扩展。
标准互质阵物理阵元所在位置集合及其差合阵列位置集合为:
(1)
扩展互质阵物理阵元所在位置集合及其差合阵列位置集合为:
(2)
(a2) (4,3)子阵元对的标准互质阵 (b2) (4,6)子阵元对的扩展互质阵
相比标准互质阵列,扩展互质阵列下的差合阵列能获得更多的连续阵元。须注意互质阵列所对应的差合阵列是存在孔洞(holes)的非均匀线阵(non-uniform linear array with holes),而二级嵌套阵所对应的差合阵列是均匀线阵(the filled ULA)。
下面我们将分析标准和扩展互质阵具有的优良性质。
1.2 互质阵的性质
(1) 的自由度(Degree of Freedom, DOF)高于MN;
Proof: k1和k2的组合方式一共有MN种,即证无重复元素。假设存在,那么,,所以假设不存在,无重复元素。
(2)
Proof: 由扩展欧几里得算法可知:已知整数a和b,可以求得a和b的最大公约数(Greatest Common Division, gcd)的同时,找到整数x和y使得ax+by=gcd(a,b),其中有一个可能是是负数。因此。
(3) 扩展互质阵对应的差合阵列可形成的filled ULA with hole-free范围:
a.
b.
Proof: (2) 倘若,必然存在,使得。因此通过对p的合理选择,存在,其中。又因,,由此可推导出。
(4) 不管是标准还是扩展互质阵,其差合阵列有冗余阵元(redundancy)和孔洞(hole);
(5) 相同物理阵元下,嵌套阵比互质阵的DOF多;
Proof: 中当k1=0或者k2=0既是cross-difference情况,也是self-difference情况,即coprime中self-difference全部包含于中cross-difference。而在嵌套阵中,cross-difference为或,当m=n=1时会同时出现在self-difference和cross-difference中,其余的self-difference不会全部出现在cross-difference里。因此嵌套阵比互质阵的DOF多。
(6) 相同物理阵元下,差合阵列比和合阵列的DOF多;
Proof: 对比和合阵列(共址MIMO)和差合阵列(被动接收),显然差合阵列比和合阵列的DOF多。
2 扩展互质阵信号模型
(3)
3 扩展互质阵DOA估计
协方差矩阵Rx表示为:
(4)
3.1 原始数据直接处理——Direct-MUSIC
值得注意的是直接对稀疏阵下的协方差矩阵Rx进行DOA估计,则测向结果会存在模糊现象。然而,文献[R4, R5]已证明,互质阵之特殊阵列结构可有效消除上述直接数据域中的DOA估计模糊效应,嵌套阵信号处理中无类似结论。
3.2 相关域数据处理——向量化协方差矩阵+虚拟差合阵元过程
此时若2M+N-1<K,A为fat matrix,此时的信号模型是欠定的。向量化可得:
(5)
参考文献
[R1] P. P. Vaidyanathan and P. Pal, "Sparse sensing with coprime arrays," 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, 2010, pp. 1405-1409.
[R2] P. Pal and P. P. Vaidyanathan, "Coprime sampling and the music algorithm," 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), 2011, pp. 289-294.
[R3] P. P. Vaidyanathan and P. Pal, "Sparse Sensing With Co-Prime Samplers and Arrays," in IEEE Transactions on Signal Processing, vol. 59, no. 2, pp. 573-586, Feb. 2011.
[R4] P. P. Vaidyanathan and P. Pal, "Direct-MUSIC on sparse arrays," 2012 International Conference on Signal Processing and Communications (SPCOM), 2012, pp. 1-5.
[R5] P. P. Vaidyanathan and P. Pal, "Why does direct-MUSIC on sparse-arrays work?," 2013 Asilomar Conference on Signals, Systems and Computers, 2013, pp. 2007-2011.