信息熵、交叉熵、相对熵

本文从热力学的熵概念出发,解释了信息熵如何度量信源的不确定度,指出熵越大,不确定性越高,需要的存储空间越大。接着通过例子展示了不同天气概率下的信息熵计算,并引出交叉熵的概念,它用于评估使用非真实分布策略消除系统不确定性所需的努力。交叉熵常作为损失函数衡量模型预测概率与实际分布的相似性。最后提到了相对熵(KL散度),用于衡量两个概率分布的差异,值越小表示两者越接近,当相同时为0。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主要在此文基础上精简,按自己理解表达下【直观详解】信息熵、交叉熵和相对熵

  • 熵,热力学中表征物质状态的参量之一,用符号S表示,其物理意义是体系混乱程度的度量。
  • 信息熵,描述信源的不确定度。

信息熵越大,越无序,越随机,信息量(的期望)越大,要消除不确定性所需信息量越大。

考虑把信息量存储下来需要多大空间/存储代价
(用存储空间表示信息熵(不确定性越高所需存储空间越大))

举例:表示天气情况的 P=[p1,p2,p3,p4] P = [ p 1 , p 2 , p 3 , p 4 ] ,通常做法表示为[00,01,10,11],共2bit

S=i=14(Pi×F(Pi)) S = ∑ i = 1 4 ( P i × F ( P i ) )

F(Pi) F ( P i ) 表示存储空间, Pi P i 表示事件i的概率,公式表示各个事件需要的存储空间期望和

概率越大,存储空间越小(哈夫曼编码)

F(Pi)=1Pi;F(
### 信息熵 信息熵是一种衡量随机变量不确定性的指标。对于离散型随机变量 \(X\),其概率质量函数为 \(P(X)\),则信息熵定义如下: \[ H(X) = - \sum_{i=1}^{n} P(x_i) \log_2(P(x_i)) \] 其中,\(P(x_i)\) 表示事件 \(x_i\) 发生的概率[^1]。 信息熵越高,则系统的不确定性越大;反之亦然。 --- ### 交叉熵 交叉熵是用来衡量两个概率分布之间差异的一种方法,在机器学习中广泛应用于分类任务中的损失计算。假设真实分布为 \(P\),预测分布为 \(Q\),那么交叉熵可以表示为: \[ H(P, Q) = - \sum_{i=1}^{n} P(x_i) \log(Q(x_i)) \] 这里需要注意的是,交叉熵不仅依赖于真实的概率分布 \(P\),还取决于模型预测的概率分布 \(Q\)。因此,它是评估模型性能的重要工具之一[^2]。 --- ### KL 散度 KL 散度(Kullback-Leibler divergence),也称为相对熵,用于量化两个概率分布之间的差异程度。给定两个概率分布 \(P\) 和 \(Q\),KL 散度的公式为: \[ D_{KL}(P || Q) = \sum_{i=1}^{n} P(x_i) \log{\frac{P(x_i)}{Q(x_i)}} \] 值得注意的是,KL 散度具有 **非对称性** 和 **非负性** 的特点。即通常情况下 \(D_{KL}(P || Q) \neq D_{KL}(Q || P)\)[^3]。 --- ### JS 散度 JS 散度(Jensen-Shannon divergence)是对称版本的 KL 散度,解决了 KL 散度不对称的问题。它通过引入中间分布来实现这一点。设 \(M = \frac{1}{2}(P + Q)\),则 JS 散度可写成: \[ D_{JS}(P || Q) = \frac{1}{2} D_{KL}(P || M) + \frac{1}{2} D_{KL}(Q || M) \] 由于 JS 散度基于 KL 散度构建,所以它的取值范围在 \([0, 1]\) 内,并且满足对称性和有限性条件。 --- ### 定义区别与联系 | 指标 | 描述 | |------------|------------------------------------------------------------------------------------------| | **信息熵** | 测量单个随机变量本身的不确定性 | | **交叉熵** | 度量两个概率分布间的差异,主要用于监督学习中的目标优化 | | **KL 散度** | 计算一个分布相对于另一个分布的信息增益或“距离”,是非对称的 | | **JS 散度** | 基于 KL 散度改进而来,解决非对称问题并提供更稳定的数值表现 | 这些概念都属于信息论范畴,但在实际应用中有不同的侧重点。例如,交叉熵被频繁用作神经网络训练的目标函数,而 KL 散度更多地出现在变分推断等领域。 --- ### 在机器学习和深度学习中的作用 - **信息熵**:帮助理解数据集内部结构以及特征的重要性。 - **交叉熵**:作为分类任务的核心损失函数,指导模型参数调整以最小化误差。 - **KL 散度**:适用于生成对抗网络 (GANs) 或变分自编码器 (VAEs) 中隐空间分布匹配的任务。 - **JS 散度**:相比 KL 更加稳定可靠,尤其适合处理不平衡样本情况下的相似度比较场景。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值