1 “具身智能”名字的由来
伴随着春晚机器人的表演,之前火热的“人工智能”突然被崭新的“具身智能”所代替。这一概念的命名其实源于认知科学和人工智能领域的交叉研究,其中“具身”是因认知科学中强调其核心作用,主张智能必须依托物理载体,是一个具象的概念体。“智能”是延续人工智能技术的发展,即人工智能技术在“具身”上的应用。传统的人工智能将智能简化为符号逻辑的推演,通过算法模型复现人类思维的抽象过程,是一种“离身智能”,其无法理解物体属性或无法模拟人类在复杂环境中的自适应能力。“具身智能”是智能体通过视觉、触觉等多模态传感器获取环境信息,经神经网络处理生成决策指令,再通过执行器与环境交互形成反馈闭环,即“身体就是认知工具”。
2 技术路径的分野:分层架构与端到端革命的博弈
当前具身智能的技术实现呈现两大主流路径:
-
分层架构:以OpenAI与Figure公司合作的Figure 01机器人为代表,采用“感知-规划-控制”三级架构。其策略控制系统(SLC)整合大型语言模型的环境理解能力,行为控制系统(PLC)通过传统控制算法实现精确力矩输出。这种设计虽保证了复杂任务中的稳定性,但层级间的信息损耗可能削弱实时响应能力。
-
端到端模型:如Google的RT-2系统,通过视觉语言模型(VLMs)直接生成动作指令,实现从感知到执行的跨模态映射。该模型在未知物体抓取任务中展现出“涌现能力”,但需要海量物理交互数据支持训练。
两种路径的竞争本质上是可解释性与泛化性的权衡。分层架构更适合工业场景的确定性需求,而端到端模型在服务机器人等动态环境更具潜力。值得关注的是,具身小脑模型的提出,尝试通过仿生神经回路弥合两者鸿沟,这或许将成为下一代技术突破的关键。
3 产业革命:从实验室到万亿级市场的裂变
2025年国务院政府工作报告将具身智能列为未来产业培育重点,其产业化进程已呈现三大特征:
-
载体形态多元化:从人形机器人向复合形态延伸。如中科源码物流机器人采用轮式底盘与机械臂组合,在仓储场景实现货品分拣效率提升300%。
-
技术融合加速:多模态大模型(如GPT-4o)与力控技术的结合,使机器人能同时解析语音指令和触觉反馈。特斯拉Optimus通过指尖压电传感器实现鸡蛋抓取,其触觉分辨率达到0.1牛级精度。
-
伦理框架构建:欧盟已发布《具身智能系统伦理指南》,要求智能体决策过程需符合“人类价值观可追溯”原则。这倒逼企业研发可解释性更强的行为决策模型。
4 挑战与未来:跨越“莫拉维克悖论”的深壑
尽管前景广阔,具身智能仍面临三重悖论:
-
数据悖论:物理交互数据的采集成本是纯文本数据的百倍,但仿真训练又导致“数字孪生”与真实世界的语义鸿沟。
-
能耗悖论:Atlas机器人完成10分钟动态动作需消耗2千瓦时电力,能效比仅为人类的1/50。
-
进化悖论:人类婴儿通过3年具身探索即可掌握基本生存技能,而当前最先进机器人学习相同技能需百万次试错。
突破这些瓶颈需要跨维度技术创新:量子传感技术可提升环境感知效率,液态金属肌肉纤维可能重塑执行器设计,神经形态计算芯片有望模拟小脑的运动控制机制。或许正如罗德尼·布鲁克斯预言:“真正的智能革命,将从机器人学会‘跌倒后自己站起’开始。”