OpenCV人脸检测
OpenCV提供了多种人脸检测方法,包括基于Haar级联的传统方法和基于深度学习的现代方法。Haar级联是一种经典的机器学习算法,适用于实时应用,因为它可以快速处理图像。
-
级联(Cascade)结构:
- Cascade分类器由多个简单的分类器组成,这些分类器按照一定的顺序级联起来。
- 每个分类器都是一个弱分类器,只能对图像中的一部分区域进行简单的判断。
- 当图像或图像中的某个区域通过所有分类器的判断时,才认为它是一个目标。
深度学习方法,如MTCNN(Multi-Task Cascade Convolutional Networks)和YOLOv3,提供了更高的检测准确度。
本文使用的是Haar特征的Cascade分类器(haarcascade_frontalface_default.xml
)进行人脸检测。这是一种基于机器学习的方法,可以快速检测图像中的人脸。
detectMultiScale
方法用于在灰度图像上检测多尺度的人脸,返回检测到的人脸矩形框坐标。人流
# 加载人脸检测器(这里使用的是Haar特征的Cascade分类器)
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
运动检测
通过比较连续两帧图像的灰度差异来检测运动。这通过计算两帧图像之间的绝对差(cv2.absdiff
)实现,对差异图像进行阈值处理(cv2.threshold
),将差异较大的区域(即运动区域)转换为白色,其他区域为黑色。使用形态学操作(如膨胀cv2.dilate
)来增强运动区域的特征,以便更容易地通过轮廓检测找到运动物体。cv2.findContours
方法用于检测并提取图像中的轮廓,这些轮廓对应于运动物体。
# 如果没有背景图像就将当前帧当作背景图片
if pre_frame is None:
pre_frame = gray_pic
else:
# absd