(全网最详细的可运行的人流统计程序)基于OpenCV的实时视频处理系统

OpenCV人脸检测

OpenCV提供了多种人脸检测方法,包括基于Haar级联的传统方法和基于深度学习的现代方法。Haar级联是一种经典的机器学习算法,适用于实时应用,因为它可以快速处理图像。

  1. 级联(Cascade)结构

    • Cascade分类器由多个简单的分类器组成,这些分类器按照一定的顺序级联起来。
    • 每个分类器都是一个弱分类器,只能对图像中的一部分区域进行简单的判断。
    • 当图像或图像中的某个区域通过所有分类器的判断时,才认为它是一个目标。

深度学习方法,如MTCNN(Multi-Task Cascade Convolutional Networks)和YOLOv3,提供了更高的检测准确度。

本文使用的是Haar特征的Cascade分类器(haarcascade_frontalface_default.xml)进行人脸检测。这是一种基于机器学习的方法,可以快速检测图像中的人脸。

detectMultiScale方法用于在灰度图像上检测多尺度的人脸,返回检测到的人脸矩形框坐标。人流

# 加载人脸检测器(这里使用的是Haar特征的Cascade分类器)
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

运动检测

通过比较连续两帧图像的灰度差异来检测运动。这通过计算两帧图像之间的绝对差(cv2.absdiff)实现,对差异图像进行阈值处理(cv2.threshold),将差异较大的区域(即运动区域)转换为白色,其他区域为黑色。使用形态学操作(如膨胀cv2.dilate)来增强运动区域的特征,以便更容易地通过轮廓检测找到运动物体。cv2.findContours方法用于检测并提取图像中的轮廓,这些轮廓对应于运动物体。

    # 如果没有背景图像就将当前帧当作背景图片
    if pre_frame is None:
        pre_frame = gray_pic
    else:
        # absd
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值